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The filamentous fungus Neurospora crassa is a leading model organism for circadian clock

studies. Computational identification of a protein–protein interaction (PPI) network (also known

as an interactome) in N. crassa can provide new insights into the cellular functions of proteins.

Using two well-established bioinformatics methods (the interolog method and the domain

interaction-based method), we predicted 27 588 PPIs among 3006 N. crassa proteins. To the best

of our knowledge, this is the first identified interactome for N. crassa, although it remains

problematic because of incomplete interactions and false positives. In particular, the established

PPI network has provided clues to further decipher the molecular mechanism of circadian

rhythmicity. For instance, we found that clock-controlled genes (ccgs) are more likely to act as

bottlenecks in the established PPI network. We also identified an important module related to

circadian oscillators, and some functional unknown proteins in this module may serve as potential

candidates for new oscillators. Finally, all predicted PPIs were compiled into a user-friendly

database server (NCPI), which is freely available at http://protein.cau.edu.cn/ncpi.

Introduction

Neurospora crassa has been an experimental model organism

for the fundamental understanding of genome defense systems,

DNA repair, circadian rhythms, DNA methylation, and post-

transcriptional gene silencing for the latter half of the 20th

century.1 In particular, it has become one of the most durable

and dependable model organisms for studying circadian

rhythmicity, thereby playing an important role in addressing

the central questions of chronobiology.2 In the circadian

system, circadian oscillators receive light and temperature

signals, and then transmit them to output pathways. Thus,

oscillators can control the rhythmic activity of the clock-

controlled genes (ccgs) that function in various aspects of

the fungal life cycle.3 Prior to this study, the core oscillator

components andB295 ccgs had been identified inN. crassa.4–6

As the main participants in most cellular processes, proteins

perform their functions by creating macromolecular assemblies

and a large number of protein–protein interactions (PPIs). The

availability of PPI networks (also referred to as interactomes)

will provide a new way to understand the biological organizations

of living organisms from the perspective of systems biology.

Interactome data have also been widely used to assign biolo-

gical functions to uncharacterized proteins. This process is

supported by the observation that interacting proteins gener-

ally have collaborative or similar functions.7 The genome

sequences of N. crassa were released in 2003,1 and only

approximately 40% of the proteins have been functionally

annotated in the MIPS N. crassa Genome Database

(MNCDB).8 Undoubtedly, a comprehensive N. crassa PPI

dataset will accelerate the functional annotation of N. crassa

proteins. Additionally, a PPI network will also be helpful to

explore the molecular mechanism of circadian rhythmicity

from the network perspective.

Using high-throughput techniques, such as yeast two-

hybrid,9 mass spectrometry10 and protein chip,11 proteome-

scale interactome data have been experimentally extracted for

many model organisms, including Saccharomyces cerevisiae,12

Caenorhabditis elegans,13 Drosophila melanogaster,14

Helicobacter pylori15 and Homo sapiens.16 These interactome

data have provided insights into biological complexes, pathways

and entire organisms, despite the noise and incompleteness of

the experimentally determined PPIs.17 Unfortunately, none of

these high-throughput methods has been applied to the

filamentous fungus N. crassa, although it is highly demanded.

Owing to the time-consuming nature of experiments, a variety

of computational prediction methods have been developed to

complement experimental approaches. These prediction methods

can be roughly classified into genome-scale approaches,18

sequence-based approaches,19 structure-based approaches,20

machine learning-based approaches21 and network-based
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approaches.22 In general, prediction methods can generate

protein pairs with functional associations or physical inter-

actions.23,24 Two sequence-based approaches (i.e., the interolog

method25 and domain interaction-based method26) are widely

implemented in practical applications to predict physical

interactions.27 The interolog method can be described as the

transfer of interaction annotations between species through

comparative genomics,19 which is qualified by the conservation

of proteins. The domain interaction-based method is based on

the assumption that protein interaction is deduced from

domain–domain interactions. Thus, the domain interaction-

based method complements the interolog method because

interacting proteins without interacting homologs may contain

interacting domains that can be obtained experimentally.

Until now, these two well-recognized methods have been

employed to construct proteome-wide PPI networks for

important organisms, such as Magnaporthe grisea,28 Fusarium

graminearum,29 Mycobacterium tuberculosis30 andDeinococcus

radiodurans.31

In this study, we used the interolog method and the domain

interaction-based method to construct a predicted PPI

network of N. crassa. To explore the mechanism of circadian

rhythmicity from the network perspective, network topology

analysis of CCGs and non-CCGs was carried out and network

modules associated with CCGs and circadian oscillators were

identified. We also built a user-friendly web-interface N. crassa

Protein Interactome (NCPI) database.

Materials and methods

Datasets

N. crassa sequence data.We obtained 9830 N. crassa protein

sequences from the Broad Institute (http://www.broadinstitute.

org/annotation/genome/neurospora/MultiDownloads.html,

Version 3).

Protein–protein interaction data.We collected PPI data from

four high-quality interactome databases, including 60 699 PPIs

from the Database of Interacting Proteins (DIP; http://dip.

doe-mbi.ucla.edu/, 12-30-2009 release),32 103 628 PPIs from

the Molecular INTeraction database (MINT; http://mint.bio.

uniroma2.it/mint/, 07-29-2009 release),33 38 788 PPIs from the

Human Protein Reference Database (HPRD; http://www.

hprd.org, 07-06-2009 release 8),34 and 193 422 PPIs from

The IntAct molecular interaction database (IntAct; http://

www.ebi.ac.uk/intact/, 08-25-2009 release).35

Domain interaction data.We obtained protein domain inter-

actions from iPfam36 and 3did,37 which were compiled from

the known domain–domain interaction data in PDB.38 A total

of 5785 non-redundant interacting Pfam-A domain pairs were

collected from the iPfam database (http://pfam.sanger.ac.uk/,

version 24) and the 3did database (http://3did.irbbarcelona.org/,

10-18-2009 release).

Prediction of PPIs based on the interolog approach

Using the interolog method, we identified potential N. crassa

PPIs based on the known PPIs in DIP, MINT, HPRD and

IntAct (Fig. 1). First, the PPIs in these four interactome

databases were preprocessed. Briefly, the sequence identifiers

in different interactome databases were treated with a

standardization pipeline. This process allowed us to avoid

any possible confusion caused by the fact that one protein

may have different identifiers. All sequence identifiers were

mapped to NCBI RefSeq or EBI Uniprot identifiers. The

unmatched proteins were considered to be unverified and were

discarded. In addition, six known N. crassa PPIs from these

four interactome databases were also discarded at this step

because these PPIs were later used to assess the prediction

results. Next, the sequences of all the remaining PPIs were

obtained from EBI Uniprot if they were unavailable in the

corresponding interactome database. For each PPI in the

interactome databases, the corresponding two protein

sequences were used as queries and BLASTed against the

whole proteome ofN. crassa to identify homologs with e-value,

sequence identity and aligned sequence length coverage cut-offs

of 1.0 � 10�10, 40% and 40%, respectively. The aligned

sequence length coverage was defined as the aligned sequence

length of the query (without gaps) divided by the whole

sequence length of the query. The corresponding homolog

pairs identified in N. crassa were predicted to interact with

each other. In general, PPIs inferred from more than one

experimentally verified PPI have higher confidence. Therefore,

PPIs predicted from only one PPI in the interactome datasets

were removed.

Prediction of PPIs based on domain interaction-based approach

The key idea of the domain interaction-based approach in this

study was to infer whether N. crassa protein pairs can interact

based on the domain–domain interaction information from

the iPfam and 3did databases (Fig. 1). Briefly, N. crassa

proteins were mapped to Pfam-A domains from the Pfam

database with the e-value and aligned sequence length coverage

cut-offs of 0.001 and 80%, respectively. The aligned sequence

length coverage was computed as the aligned sequence length

of the query (without gaps) divided by the total sequence

length of the corresponding Pfam-A domain. If the N. crassa

protein pair contained an interacting Pfam-A domain pair, the

proteins were expected to interact with each other. Compared

with the interolog method, the domain interaction-based

method generally shows lower accuracy.39 To remove

potentially false positives, two filtration procedures were

conducted. We first filtered the predictions based on interacting

Pfam-A domain pairs that were able to infer more than 1% of

the total predictions.40 The interactions among multiple

domain proteins may be mediated by multidomain interactions

or domain–motif interactions, rather than single domain

pairs.29 Therefore, the predicted interacting protein pair was

further filtered if any protein in the pair contained multiple

domains.

Analysis of network topology

A PPI network can be represented as an undirected graph,

G(V, E), that consists of a set of vertices, V, and a set of edges,

E. Each vertex (i.e., node) represents a singular protein, while

each edge represents an interaction between two proteins. The

degree refers to the number of interacting partners of a vertex.

D
ow

nl
oa

de
d 

by
 I

ow
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

16
 M

ay
 2

01
1

Pu
bl

is
he

d 
on

 1
6 

M
ay

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1M
B

05
02

8A
View Online

http://dx.doi.org/10.1039/c1mb05028a


This journal is c The Royal Society of Chemistry 2011 Mol. BioSyst.

The betweenness is measured by the total number of shortest

paths through a certain vertex. More shortest paths crossing

through a given vertex results in a higher score of betweenness

for the vertex. The closeness depicts how close a vertex is to all

other vertices in the graph, which is defined as the average

distance from a vertex to any other vertex. The clustering

coefficient measures the network cohesiveness, which reflects

the density of connected neighborhoods of a vertex. We used

NetworkAnalyzer41 (http://med.bioinf.mpi-inf.mpg.de/netana

lyzer/), a Java plugin for Cytoscape,42 to calculate these

parameters. In addition, hubs were defined as the top 20%

high degree proteins. Bottlenecks were defined as the top 20%

high betweenness proteins.43

Assessment of the reliability of predicted PPIs

First, we collected experimentally-verified N. crassa protein

interactions from public interactome databases and previous

studies to provide a direct validation of the predicted N. crassa

PPIs. We also utilized three different methods to assess

the reliability of the predicted PPIs indirectly: the protein

localization (PL) method,44 the expression profile reliability

(EPR) method,45 and the annotation similarity (AS) method.

The reliability of the predicted PPIs was tested indirectly

because there is no comprehensive experimental N. crassa

PPI dataset available. The general strategy of these three

methods is to compare the predicted network with a power

law-preserving randomized network.46 In this study, the

randomized network was constructed by keeping the degree

distribution consistent with that of the predicted network and

randomizing the degree of proteins. We used ‘‘randomized

network’’ hereafter to describe a power law–preserving

randomized network, unless stated otherwise.

The PL method assumes that interacting proteins are

localized in the same cellular compartment. To perform the

PL method, the protein sub-cellular localization information

of N. crassa proteins was predicted using WoLFPSORT with

default parameters.47 Because the overall prediction accuracy

of WoLFPSORT is reasonably good (e.g., >80%), the PL

method can verify the reliability of predicted PPIs.

The EPR method is based on the assumption that interacting

proteins tend to be co-expressed. The level of gene co-expression

of an interacting protein pair is measured by applying a Pearson

correlation coefficient (PCC) between the corresponding gene

expression profiles, which were downloaded from the filamentous

fungal microarray database48 (http://www.yale.edu/townsend/

Links/ffdatabase/introduction.htm, accession number 13).

The AS method is based on the finding that 70%–80% of

interacting protein pairs share similar functions.7 The

Gene Ontology (GO) annotations of N. crassa were obtained

using InterProScan with default parameters49 because the GO

annotations for N. crassa were not available in the GO

Consortium. The GO annotations of 4473 N. crassa proteins

were assigned, which covered 2533 proteins in the predicted

PPI network. Similar to Zhao et al. (2009),29 the Jaccard index

was employed to measure the functional similarity between

two interacting proteins. The Jaccard index is defined as the

size of the intersection of two proteins’ GO terms divided by

the size of the union of the corresponding GO terms. The

Jaccard index ranges from 0 to 1, and higher values represent

higher functional similarity. For comparison, we also conducted

the AS assessment using the functional annotations from the

MIPS FunCat system,50 which is based on manual curation

and may be more reliable.51 4073 N. crassa proteins were

annotated in FunCat, which covered 2315 proteins in the

predicted PPI network.

Fig. 1 Flowchart of the interolog and domain interaction-based approaches in predictingN. crassa protein–protein interactions. This picture was

prepared by using ConceptDraw PRO 7(http://www.conceptdraw.com).

D
ow

nl
oa

de
d 

by
 I

ow
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

16
 M

ay
 2

01
1

Pu
bl

is
he

d 
on

 1
6 

M
ay

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1M
B

05
02

8A
View Online

http://dx.doi.org/10.1039/c1mb05028a


Mol. BioSyst. This journal is c The Royal Society of Chemistry 2011

Results and discussion

Predicted protein–protein interaction network of N. crassa

In this study, 9803 interactions among 1163 proteins were

predicted based on the interolog approach, and 18 437

interactions among 2617 proteins were inferred from the

domain interaction-based approach. By integrating predictions

from the interolog and domain interaction-based approaches

and then removing redundancy, we obtained a PPI dataset of

27 588 interactions among 3006 proteins. Each protein had an

average of 18.4 partners. In general, the overlap between

the PPIs predicted by these two different methods was

negligible (Fig. 2A), suggesting that these two methods are

complementary.

Scale-free network topological property is explicitly

founded on the predicted PPI network (Fig. 2B), which has

been frequently observed in the experimentally determined

protein interaction networks of model organisms.52 In a scale-free

network, the probability, P(k), of nodes having k edges decays

as a power law P(k) E k�g. Our predicted network can be

approximately characterized by a power law distribution,

where P(k) E k�1.38 (R2 = 0.827). In the predicted PPI

network, 85 out of 3006 proteins had a degree higher than

100. These proteins were ranked as the top 15% high-degree

hubs. These hub proteins may perform important cellular

functions involved in different biological processes. For instance,

the top three hubs in the predicted PPI network [i.e., hsp70-1

(NCU09602), hsp70-5 (NCU08693) and grp78 (NCU03982)]

belong to the heat shock-induced protein HSP70 family.

Functioning as chaperones that stabilize the conformation of

a variety of proteins, HSP70 proteins are ubiquitously

and abundantly synthesized to protect cells from thermal or

oxidative stress.53

Assessment of the reliability of the predicted PPIs

Up to now, proteome-scale interactome data are still not

available for the fungus N. crassa, which made the assessment of

the predicted PPIs based on a large dataset of experimentally-

determined PPIs impossible. Despite the lack of sufficient gold

standard positives, we manually curated protein interactions

from public interactome databases and previous studies to

validate the predictedN. crassa PPIs. Of the six PPIs deposited

in public interactome databases and the twelve PPIs collected

from the literature, ten PPIs were successfully predicted in the

established PPI network (Table 1), which demonstrates that

the overall performance of the predicted PPIs was reasonably

high. For instance, two N. crassa proteins (NCU01227 and

NCU08471) were experimentally characterized to be two

interacting subunits of N. crassa succinyl-CoA ligase and were

successfully predicted to have a physical interaction in this

study. This particular PPI was deduced from the interolog

method, and the corresponding homologs in other model

organisms include human (P53597 and Q96199), Escherichia coli

(P0AGE9 and P0A836), yeast (P53598 and P53312) and

Campylobacter jejuni (Q0PAY2 and Q9PHY1).

In addition to the direct assessment, we also employed three

different indirect methods to comprehensively evaluate the

reliability of the predicted N. crassa PPI network. For the

PL method, 8278 PPIs in the predicted PPI network were

co-localized. The average number of co-localizations in the

1000 randomized networks was 5877 � 5.66, and the largest

number of co-localizations was 6371. Therefore, the predicted

network had a significantly higher number of co-localized

PPIs than any of the randomized PPI networks (empirical

Po 0.001). For the EPR method, the distribution of PCCs for

PPIs in the predicted PPI dataset was significantly different

from that of the randomized network (P o 2.2 � 10�16,

Pearson’s Chi-squared test, 19 d.f.). As shown in Fig. 3A,

the ratio of PPIs with higher PCC in the predicted network

was larger than that in the randomized network. In contrast,

the proportion of PPIs with lower PCCs in the predicted

network was smaller than that in the randomized network.

Therefore, the protein interaction pairs in the predicted

PPI network were prone to co-expression, implying that the

predicted PPI network was more credible than the randomized

network. Moreover, we also employed the AS method to verify

the predicted PPI network. Fig. 3B depicts the distribution of

Jaccard indices of interacting proteins in the predicted

network compared with the randomized network based on

the GO annotations. In general, the predicted interacting

protein pairs tended to have more similar functions than the

random pairs. The fractions corresponding to a Jaccard index

of 0 in the predicted and randomized networks were 0.62 and

0.90, respectively. When the Jaccard index was equal to 1.0,

the corresponding fractions were 0.11 and 0.003, respectively.

In addition, we did this assessment based on the MIPS FunCat

annotations and similar results were obtained (see ESIw).

Fig. 2 The predicted N. crassa PPIs. (A) Area-proportional Venn

diagram of predicted PPIs based on the two methods. (B) Degree

distribution of the predicted network, with both axes plotted on

logarithmic scales.
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Thus, the AS assessment also shows the relative reliability of

the predicted PPI network. Taken together, we have clearly

revealed the overall reliability of the predicted PPI network

through direct and indirect approaches.

Topological features of clock-controlled proteins in the predicted

PPI network

Circadian clocks are endogenous cellular timekeepers that

control a great diversity of daily physiological and molecular

rhythms in most eukaryotes and some prokaryotes.54,55 The

fungus N. crassa is a leading model organism for circadian

clock studies, in which circadian oscillators guide ccgs to

function in various aspects of the fungal life cycle. Previous

studies have identified 20 ccgs4 through targeted approaches,

and 295 ccgs5 have been recognized by the use of micro-

array technology. Of those identified CCGs, only 109 clock-

controlled proteins have been found in the predicted PPI

network.

We compared the topological properties of 109 clock-

controlled and 2897 non-clock-controlled proteins in the predicted

PPI network. As shown in Table 2, the betweenness centrality

of the clock-controlled proteins was significantly higher than

that of the non-clock-controlled proteins (average between-

ness: 0.0261 versus 0.00481, P = 8.31 � 10�4). The clustering

coefficient of clock-controlled proteins was significantly

lower (average clustering coefficient: 0.471 versus 0.567,

P = 3.60 � 10�3). However, no significant differences in the

degree and closeness were detected between clock-controlled

and non-clock-controlled proteins. Moreover, we found that

Table 1 A collection of curated protein interactions from interactome databases and previous studies

No. Locus Locus Cited databases or references Be predicted

1 NCU01635 NCU04402 IntAct No
2 NCU06698 NCU06687 MINT No
3 NCU04202 NCU08791 MINT No
4 NCU04202 NCU00355 MINT No
5 NCU03982 NCU02455 MINT No
6 NCU00902 NCU02356 MINT, DIP Yes
7 NCU02247 NCU04017 ref. 65 No
8 NCU09068 NCU08294 ref. 66 No
9 NCU01605 NCU07296 ref. 67 Yes
10 NCU01605 NCU09071 ref. 67 Yes
11 NCU02234 NCU06419 ref. 68 Yes
12 NCU06419 NCU11376 ref. 68 Yes
13 NCU03071 NCU00587 ref. 68 No
14 NCU00587 NCU07024 ref. 68 Yes
15 NCU06182 NCU04612 ref. 68 Yes
16 NCU04612 NCU02393 ref. 68 Yes
17 NCU01227 NCU08471 ref. 53 Yes
18 NCU06605 NCU00272 ref. 69 Yes

Fig. 3 Validation of the predicted PPI network based on the EPR

and AS methods. (A) Distribution of PCCs in the predicted network

and randomized networks. (B) Distribution of Jaccard indices for

interacting proteins from the predicted and randomized networks

based on the GO annotations.

Table 2 Comparison of the average topological properties between clock-controlled and non-clock-controlled proteins of N. crassa in the
predicted interactome

Clock-controlled proteins Non-clock-controlled proteins P-value

Degree 25.9 18.1 0.240
Betweenness 0.0261 0.00481 8.31 � 10�4

Closeness 0.413 0.391 0.0320
Clustering coefficient 0.471 0.567 3.60 � 10�3
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clock-controlled proteins might tend to act as bottleneck

nodes. In the predicted network, nearly 40% of the CCGs

were defined as bottlenecks, which we termed ‘‘bottleneck

CCGs’’ (P = 6.72 � 10�5). Because bottlenecks are likely

composed of regulatory proteins,43 these clock-controlled

proteins might be heavily involved in receiving signals from

the oscillators and regulating biological pathways. For

instance, the bottleneck CCGs NCU04883 and NCU06630

were determined to participate in or regulate cell wall synthesis

during the asexual development.56 In addition, the bottleneck

ccg-7 (NCU01528), which encodes glyceraldehyde 3-phosphate

dehydrogenase (GAPDH), is a key enzyme in the pathway of

glycolysis and gluconeogenesis.4 Its yeast homolog, tdh1, has also

been reported to be a cell-wall associated gene, which is able to

respond to stress.57 A reasonable hypothesis is that ccg-7 can

regulate carbohydrate metabolism based on oscillator signals

from the environment. Interestingly, the three bottlenecks

mentioned above have been shown to be essential genes.58 In

conclusion, the clock-controlled proteins might facilitateN. crassa

to generate molecular responses to changes in ambient light and

temperature, and play an important regulatory role in pathways

that allow N. crassa to synchronize with the environment.

Identification of clock-related modules in the predicted network

Most PPI networks contain regions where the proteins are

more highly connected to each other than to the rest of the

whole network.59 The densely-connected regions of a PPI

network are referred to as clusters or modules. We utilized

a graph theoretic clustering algorithm called MCODE60

to identify ccg- or circadian oscillators-related modules

(i.e., clock-related modules) in the predicted network. Ranked

by the generated MCODE scores, we list the first six clock-

related modules in Figure S2, ESI.w The GO enrichments in

these six modules include biological processes of various

aspects of the fungal life cycle. The potential biological impact

of the identified modules is exemplified in Module 3, where the

GO enrichments are DNA binding and gene expression

regulation (Fig. 4). Module 3 contains 20 proteins, including five

eukaryotic unique GATA transcription factors. The GATA

transcription factors have been reported to be responsible for

regulating critical biological processes, such as nitrogen

utilization and light regulation.53 Interestingly, these five

GATA transcription factors contain two components of the

well-established frq/wc-based circadian oscillator (FWO)54

[i.e., wc-1 (NCU02356 and wc-2 (NCU00902)], although frq

(NCU02265) does not appear in the predicted PPI network.

Moreover, two WC-2 binding genes [nit-2 (NCU09068) and

sre (NCU07728)] were also presented in this module,61

although the corresponding two PPIs were not predicted

correctly. Therefore, Module 3 might be an important

functional module associated with circadian rhythmicity. In

the Pfam database, all remaining proteins of the module were

found to contain a C2H2 zinc finger domain (Pfam entry:

PF00096), suggesting that these proteins might be C2H2 zinc

finger transcription factors. Recently, there has been convin-

cing evidence of the existence of FRQ-less oscillators

(FLOs).62 It has been hypothesized that FLOs, which are fully

independent of frq, can generate daily rhythm in collaboration

with wc-1 and wc-2. In general, the genes encoding oscillator

Fig. 4 Network visualization of a key module (Module 3) associated with circadian rhythmicity.
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components should have periodical expression profiles.

To detect the periodicity of gene expression profiles in Module 3,

the corresponding microarray data were processed by

ARSER.63 In addition to wc-1 and wc-2, six proteins in

Module 3 were also identified to be expressed periodically.

Therefore, these six proteins might be candidates for distinct

oscillators. It is worth mentioning that wc-1 and wc-2 are also

required for all known blue-light responses. In response to

light, they function as transcription factors to regulate

the expression of light-responsive genes.61 Thus, these

uncharacterized genes in Module 3 may also be predicted as

light-responsive genes.

Database server

We also built a user-friendly web-interface Neurospora crassa

Protein Interactome (NCPI) database (http://protein.cau.edu.

cn/ncpi), which was developed on the open source web

platform LAMP (Linux-Apache-MySQL-PHP) and was tested

using Internet Explorer (Versions 7 and higher), Firefox,

Chrome, Opera and Safari web browsers. Furthermore, the

functionality of network visualization was implemented based

on VisANT.64 In addition to the predicted PPIs, eight

manually curated protein interactions from public interactome

databases and previous studies, which were not successful

predicted, were also compiled into NCPI.

Conclusions

Using two well-recognized PPI prediction methods, we

constructed a predicted PPI network of N. crassa.

Experimental PPI information from previous studies or public

PPI databases indicated that some predictions were actual

interactions. Moreover, the overall reliability of the predicted

PPI network was also clearly demonstrated by the results of

three distinct assessment methods. Although the established

network is far from complete and certainly contains false

positives, we hope that the established network can provide

new insights into the functions of N. crassa proteome at the

system level. Based on the network topology analysis of CCGs

in the predicted PPI network, we found that CCGs are inclined

to act as bottlenecks. Therefore, they receive signals from

oscillators and play an important regulatory role in biological

pathways. As an example of the application of the established

network, we also identified a key module related to circadian

rhythmicity, which provides new candidates for circadian

oscillators.
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