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In a plant, the progression from vegetative growth to reproductive growth is called the floral transition. Over the past several
decades, the floral transition has been shown to be determined not by a single gene but by a complicated gene network. This
important biological process, however, has not been investigated at a genome-wide network level. We collected Arabidopsis
(Arabidopsis thaliana) protein-protein interaction data from several public databases and compiled them into a genome-wide
Arabidopsis interactome. Then, we integrated gene expression profiles during the Arabidopsis floral transition process into the
established protein-protein interaction network to identify two types of anticorrelated modules associated with vegetative and
reproductive growth. Generally, the vegetative modules are conserved in plants, while the reproductive modules are more
specific to advanced plants. The existence of floral transition switches demonstrates that vegetative and reproductive processes
might be coordinated by the interacting interface of these modules. Our work also provides many candidates for mediating the
interactions between these modules, which may play important roles during the Arabidopsis vegetative/reproductive switch.

Flowering is one of the most significant decisions
that can occur during a plant life cycle. Plants switch
from vegetative growth to flower development only
when favorable environmental conditions for repro-
duction appear (Baurle and Dean, 2006). This biolog-
ical process has intrigued and puzzled people for
centuries. Generally, daylength is one of the key fac-
tors for inducing floral development, and the affected
organ is the leaf. While the flower develops in the
shoot apical meristem, the so-called “florigen” is
thought to be generated in the leaves and transported
to the shoot apex. It then switches the shoot apical
meristem from leaf production to early flower devel-
opment. After decades of careful work, this mysteri-
ous substance has been identified to be the gene
product of FLOWERING LOCUS T (FT; Wigge et al.,
2005; Corbesier and Coupland, 2006; Corbesier et al.,
2007; Turck et al., 2008).

Besides FT, several key regulatory genes of the floral
transition process in the model plant Arabidopsis
(Arabidopsis thaliana) have been identified. Extensive

genetic and molecular analysis has further revealed
some regulatory interactions between these genes
(Lagercrantz, 2009; Liu et al., 2009; Mutasa-Gottgens
and Hedden, 2009). Various pathways controlling the
timing of the floral transition have also been eluci-
dated, such as the gibberellin pathway, the ambient
temperature pathway, and the light quality pathway
(Mockler et al., 2003; Henderson and Dean, 2004).
These findings clearly suggest that the plant vegeta-
tive/reproductive transition process is controlled by
an intricate gene network (Bernier et al., 1993; Jonsson
and Krupinski, 2010). However, investigation of this
biological process at a large-scale network level has
rarely been reported, although the flowering gene
network, based on a few core floral genes, was previ-
ously addressed (Mendoza and Alvarez-Buylla, 1998;
Mendoza et al., 1999; Espinosa-Soto et al., 2004; Alvarez-
Buylla et al., 2008).

In the past several years, large-scale protein-protein
interaction (PPI) data, gene expression data, and phe-
notypic data have been generated by high-throughput
techniques. There has been an increasingly important
need for computational analysis focusing on integrat-
ing these data, as such integration could allow us to
answer many biological questions at a systems biology
level (He et al., 2008; Snyder and Gallagher, 2009).
Han et al. (2004) first showed that the dynamics of
PPI networks can be deciphered by integrating inter-
actome and gene expression profiles. Later, Piano and
coworkers integrated the PPI network, gene expres-
sion profiles, and phenotypic profiles to reveal molec-
ular machines involved in Caenorhabditis elegans early
embryogenesis (Gunsalus et al., 2005). Similar studies
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focusing on certain human cellular processes, such as
systemic inflammation (Calvano et al., 2005), aging
(Xue et al., 2007), and asthma (Hwang et al., 2008),
have also been reported. To our knowledge, this type
of analysis has not been applied to the plant flowering
process. Xia et al. (2006) integrated the human protein
interactome with the gene expression profile during
the human life cycle to investigate the human aging
process, providing a reference pipeline of integrating
the interactome and the transcriptome to study certain
biological processes.
Similar to the pipeline of Xia et al. (2006), in this

work, we analyzed the Arabidopsis floral transition
process at a genome-wide network level. First, we
combined Arabidopsis PPI data and gene expression
data during the floral transition process into an NP
network, which consists only of interacting protein
pairs with anticorrelated (Negative) or correlated
(Positive) gene expression profiles. Second, we per-
formed the network analysis by clustering the NP
network into different modules. Each module is a
group of genes that are coexpressed during the floral
transition process. Finally, we focused on the charac-
terization of two types of transcriptionally anticorre-
lated modules (V-ally and R-ally; see below), in which
vegetative growth and reproductive growth genes,
respectively, are enriched. Interestingly, we found that
protein complexes and signaling pathways that are
involved in flowering control are frequently distrib-
uted at the interface between these two types of
modules.

RESULTS AND DISCUSSION

The NP Network

Construction of the NP Network

To construct the NP network related to the early
floral induction interactome of Arabidopsis, the cor-
responding interactions and gene expression data
were first obtained. Genome-wide Arabidopsis PPI
data generated from high-throughput experimental
methods are still unavailable. Although the Arabidop-
sis interactome was predicted using computational
tools (Geisler-Lee et al., 2007; Cui et al., 2008; Brandao
et al., 2009; Lin et al., 2009), the reliability of these
predicted data needs further experimental validation
(Shoemaker and Panchenko, 2007). Therefore, we first
extracted Arabidopsis PPIs from three publicly avail-
able databases, The Arabidopsis Information Resource
(TAIR; Swarbreck et al., 2008), IntAct (Hermjakob
et al., 2004), and BioGrid (Breitkreutz et al., 2008),
which collected experimentally validated PPI data
from widely distributed literature. Then, we compiled
them into an Arabidopsis PPI data set (Supplemental
File S1) that contains a total of 2,303 proteins and 4,660
interactions. Although the size of the data set is
relatively small, it represents, to our knowledge, the
most comprehensive experimentally verified Arabi-

dopsis interactome. We may further choose those
interactions observed by two or more experimental
techniques or reported in different literature as “high-
confidence” interactions. However, only a few hun-
dred interactions will be kept after such a filtering,
which is not enough for a large-scale interactome
analysis. Therefore, we did not conduct any filtering
to improve the quality of the interaction data.

The transcriptome data used in our work were
generated from the shoot apex of the Columbia wild
type (Col-0), which was examined at 0, 3, 5, and 7 d
after floral induction (long days, 21�C; Schmid et al.,
2003). We chose this data set for the following reasons:
(1) this data set was generated under the most com-
mon conditions used to induce floral development in
laboratories; (2) the chip probe design is based on the
genome sequence of Col-0, which is the most widely
used Arabidopsis wild type in genetic and molecular
studies; and (3) gene expression data of the shoot apex
could reveal features of the floral transition process
(Henderson and Dean, 2004). To test whether the
transcriptional changes of genes in different data sets
have similar tendencies or not, we compared the
transcriptome data used in our work with another inde-
pendent data set (http://www.ebi.ac.uk/microarray-
as/ae/; ArrayExpress accession no. E-MEXP-728).
Since these two data sets were generated with similar
experimental conditions, the correlation of a gene’s
expression profiles in these two data sets, measured by
Pearson correlation coefficient (PCC), can provide
indirect evidence of the quality of this gene’s expres-
sion profile in the data set used in our work. We found
that the correlation (i.e. the average PCC value) be-
tween these two data sets is significantly higher than
the one between the data set used in our work and a
randomly generated microarray data set (one-tailed t
test, P = 4.33 3 10217), implying that both the data sets
follow relatively similar trends in transcriptional
changes.

The obtained gene expression data were integrated
into the Arabidopsis PPI data set to construct an NP
network. The PPIs with correlated or anticorrelated
gene expression profiles were defined as correlated
(positive) or anticorrelated (negative) interactions. We
only considered correlated or anticorrelated inter-
actions in constructing the NP network, as these in-
teractions are biologically active during the floral
transition process (Dhillon et al., 2003; Qian et al.,
2003). PCC was employed to examine the correlation
between two gene expression profiles. A PCC value of
1 stands for perfect correlation and 21 stands for
complete anticorrelation. PCC values of 0.4/20.4
were used as cutoff values for correlated/anticorre-
lated interactions. In other words, only interactions in
the Arabidopsis PPI data set with PCC values greater
than 0.4 or less than 20.4 were retained. Additionally,
self-interactions and interactions without gene expres-
sion profiles for any one of the interacting proteins
were discarded. The resulting subnetwork, called the
NP network, consisted of 1,353 proteins and 1,703
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interactions (1,098 positive interactions and 605 nega-
tive interactions; Supplemental File S2).

The Partition of the NP Network

UsingCluster and Treeview (Eisen et al., 1998), seven
clusters were generated from the gene expression data
of the NP network (Fig. 1, A and B; Supplemental File
S2). To avoid confusion, the clusters originating from
the gene expression profile analysis were referred to as
modules at the network level. Intramodule interactions
are maximally correlated, while nearly all anticorre-
lated interactions are distributed between modules.
More details about the partition of the NP network are
outlined in “Materials and Methods.”

Generally, these modules are groups of genes coex-
pressed in the shoot apex during the floral transition
and have some specific biological functions. Interest-
ingly, two modules were mainly connected by neg-
ative interactions, with an average PCC value of
20.99, indicating that the genes in one module are
up-regulated while the genes in the other module are
down-regulated during the floral transition process.
Since the up-regulated genes might be associated with
reproductive development and the down-regulated
genes with vegetative development, we defined the
two modules as RP (Reproductive Phase) and VP
(Vegetative Phase), respectively (Fig. 1B). Further-
more, Gene Ontology (GO; Harris et al., 2004) en-
richment analysis showed that the VP module is
overrepresented by plant vegetative development-
related genes, such as chloroplast organization genes,
while the RP module is enriched in flower develop-
mental regulation genes (Table I). These identified
biological functions are consistent with the assump-
tion that these two modules are associated with the
vegetative and reproductive phase, respectively. The
other modules were named according to their en-
riched biological functions. There are 193, 241, 201,
297, 171, 161, and 89 proteins and 75, 108, 53, 130, 41,
35, and 16 interactions within the VP, RP, MR (Multiple
Regulation), DP (Development Process), PS (Photo-
synthesis), MP (Metabolism and Proliferation), and
SU (Small Undetermined) modules, respectively (Ta-
ble I; Fig. 1C).

In addition to the most significant anticorrelation
between VP and RP, more than 75% of the interactions
were also anticorrelated in the module pairs VP-MP,
MR-MP, DP-MP, PS-SU, RP-SU, DP-PS, and RP-PS
(Fig. 1C). Of the seven identified modules in the NP
network, four modules (VP, RP, PS, and DP) contrib-
uted the top three significantly anticorrelated module
pairs (VP-RP, DP-PS, and RP-PS), of which the average
PCCs were 20.99, 20.78, and 20.77, respectively.
Approximately 40% of all negative interactions in the
entire NP network occurred between these four mod-
ules. As shown in Table I, VP and PS are associated
with plant vegetative growth, while DP and RP are
largely associated with plant reproductive growth.
Thus, VP and PS are referred to as V-ally (Vegetative

Phase Ally), and DP and RP are referred to as R-ally
(Reproductive Phase Ally).

To test whether the partition of V-ally and R-ally
relies on certain PCC cutoffs, the construction and
partition of the NP network were recalculated using
two more stringent PCC cutoffs (0.5/20.5 and 0.6/
20.6). Generally, the more stringent the cutoff, the
lower the number of the generated modules. For
example, there were five modules identified in the
NP network when the PCC cutoff was set to 0.5/20.5
(Supplemental File S3). When we increased the cut-off
up to 0.6/20.6, only a three-module NP network was
identified (Supplemental File S3). One possible expla-
nation is that the ratio of positive interactions in the
resulting NP network is augmented as we increase the
PCC cutoff (from 65% at 0.4/20.4 to 70% at 0.6/20.6).
Nevertheless, the partition of V-ally and R-ally is
largely stable with the alteration of PCC cutoffs (Sup-
plemental File S3).

To investigate whether genes in the same module
can still be coexpressed in other tissues or not, we
mapped these genes onto a recently published coex-
pression gene network called AraGenNet (Mutwil
et al., 2010), which can be divided into 181 different
groups. Genes in each group share similar expression
profiles across 351 microarray data sets, and similar
groups are connected (Mutwil et al., 2010). Among
seven modules in our NP network, the largest propor-
tions of module members appearing in the same
fraction of the coexpression network (i.e. a group
and its directly connected neighboring groups) vary
from 11% to 36%. Therefore, most genes in the same
module are not necessary to be coexpressed in micro-
array data sets generated from a variety of tissues,
indicating that the partition of the NP network is
relatively specific to the shoot apex.

Moreover, a series of control experiments showed
that the module partition of our NP network cannot be
generated from randomized gene expression data or
randomized PPI networks. Shuffling the expression
values of each gene among different time points or
shuffling the expression profiles among genes gener-
ated smaller modules (one-sample t test, P , 10216;
Table II). Extremely small modules were generated,
and almost no intramodule interaction appeared after
shuffling the PCC among interactions (one-sample t
test, P , 10216; Table II). Randomizing the topology of
the NP network while keeping the same degree dis-
tribution had little impact on module partition, but the
resulting modules had relatively little overlap with
those identified from the NP network (Table II). These
control experiments clearly indicate that the module
partition of the NP network is mainly determined by
the transcriptome of the shoot apex and the Arabi-
dopsis PPI network.

Evolutionary Traits of Different Modules

These seven identified modules also reveal different
evolutionary traits (Fig. 1D). The MP module, which
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Figure 1. (Figure continues on following page.)
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contains basic metabolic genes, is the most highly
conserved among the seven modules. More than half
of the MP genes are conserved from Monosiga brevi-
collis (protozoa) to Chlamydomonas reinhardtii (single-
celled green alga), Physcomitrella patens (moss), and
Populus trichocarpa (angiosperm). By contrast, the MR
module is the least conserved, since it is related to the
regulation of signal transduction of advanced plants.

Approximately 35% of the MR genes are conserved
among the four organisms. Sixty-four percent of the
VP genes are conserved in plants, and nearly 6% of
them are specific to angiosperms, whereas 57% of the
RP genes are conserved in plants and 12% of them are
angiosperm specific. We found homologs from alga to
moss and angiosperm for 65% of the PS genes and
53% of the DP genes, respectively. However, the same

Figure 1. The partition of the NP network. A, Seven modules of the NP network. Two of the modules were named VP (green) and
RP (orange), according to their transcriptional differences. The other five were named MR (khaki), DP (red), PS (cyan), SU (blue),
and MP (purple), according to their enriched biological functions. Proteins are shown as nodes, and interactions are represented
as lines. Correlated and anticorrelated interactions are colored red and green, respectively. Stronger correlations are represented
by deeper colors. This image was generated by Cytoscape (http://www.cytoscape.org/). B, Clustering of gene expression profiles.
The gene expression data of each gene in the NP network were clustered through Cluster and Treeview. Arabidopsis genes were
clustered on the vertical dimension based on their expression similarity. The RP gene cluster is anticorrelated with the VP gene
cluster. Genes in the RP cluster are up-regulated, while the genes in the VP cluster are down-regulated during the floral transition
process. C, The number of interactions between/within modules. The number in parentheses is the total number of interactions.
The number in front of the parentheses represents correlated interactions when it is under the dashed line, and it represents
anticorrelated interactions when it is above the dashed line. The color scheme of each unit is chosen according to the proportion
of anticorrelated or correlated interactions. D, Evolutionary differences of modules. AT, PT, PP, CR, and MB represent
Arabidopsis, P. trichocarpa (tree), P. patens (moss), C. reinhardtii (alga), andM. brevicollis (protozoa), respectively. In this work,
a BLAST e-value cutoff value of 10212 and a sequence identity cutoff value of 25% were jointly used to define the homology
between two proteins. The rates of Arabidopsis proteins sharing homology among different species are illustrated by bars with
different colors. For example, the purple bar (AT-PT-PP-CR-MB) indicates the rate of Arabidopsis proteins that have homologs in
protozoa, alga, moss, and angiosperm, while the blue bar (AT-PT-PP-CR) indicates the rate of Arabidopsis proteins that have
homologs in alga, moss, and angiosperm but have no homolog in protozoa.
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Table I. GO enrichment of each module

The top five overrepresented GO terms in the Biological Process (BP) subcategory and corresponding q values are listed. Associated genes are also
provided. The BP keywords are the vocabularies in GO terms (only the BP subcategory) shared by at least 5% of genes in a module.

Module GO Accession No. GO Term q Value Gene

MP GO:0022904 Respiratory electron transport chain 1.17 3 1026 CI51, At3g52730, SDH1-1, SDH2-2, At2g02050,
At5g25450

GO:0045005 Maintenance of fidelity during
DNA-dependent DNA replication

2.03 3 1026 MSH6, MSH2, MSH7, ATMLH3, MSH3

GO:0009693 Ethylene biosynthetic process 4.88 3 1026 ACS8, ACS7, ACS11, ETO3, ACS4
GO:0009960 Endosperm development 1.87 3 1023 AGL62, FIS2, MEA
GO:0006417 Regulation of translation 2.94 3 1023 ATAUX2-11, MPC, ETO3

VP GO:0009658 Chloroplast organization 4.96 3 1027 PHOT1, PDE120, CLPR2, ADL2, GLK2,
ATMINE1, FTSZ2-1, STH3, ARC6

GO:0000096 Sulfur amino acid metabolic process 6.23 3 1026 ACS5, OASC, ATHMT-1, ATCYSD1, PIL6,
AtSerat2;2, AtSera1;1

GO:0000097 Sulfur amino acid biosynthetic
process

6.48 3 1025 OASC, ATHMT-1, ATCYSD1, AtSerat2;2, AtSera1;1

GO:0006534 Cys metabolic process 1.28 3 1024 OASC, ATCYSD1, AtSerat2;2, AtSera1;1
GO:0009813 Flavonoid biosynthetic process 1.28 3 1024 DFR, ATOMT1, TT8, STH3, PAP1, ATMYBL2
BP keyword Signaling ABF1, RCD1, CBL6, JAZ1, ATMPK4, ATMPK3,

CBL2, CAM9, WOL, ARR5, ABF3, ATNAC3,
ARR7, CBL1, ATMYC2

BP keyword Biosynthetic process DFR, ABI5, MYB113, ATOMT1, CESA8, FAH1,
PAP1, TT8, STH3, ATMYBL2, GLK2, ATMYC2

MR GO:0009966 Regulation of signal transduction 1.52 3 1028 SLY1, TMAC2, ERS1, FTA, RGL2, SLY2,
ATGID1C, ATGGT-IB, TAF12B, CTR1

GO:0009968 Negative regulation of signal
transduction

1.97 3 1025 TMAC2, ERS1, FTA, RGL2, ATGGT-IB, CTR1

GO:0009909 Regulation of flower development 1.97 3 1025 FY, CO, COL1, ELF8, FIE, VIP4, EMF2, FCA
GO:0009937 Regulation of gibberellic acid-mediated

signaling
1.83 3 1024 SLY1, RGL2, SLY2, ATGID1C

GO:0006605 Protein targeting 2.03 3 1024 MAG2, ATVTI1A, MAG1, ATVTI12, SYP121,
TOC159, PEX5

BP keyword Signaling TMAC2, AFP1, TTL, PAD4, EEL, HY5, PIF3,
TAF12B, SLY1, BIM1, ATGGT-IB, RGL2,
CPK32, CTR1, ATGID1C, FTA, BIN2, CO,
ERS1, OBF5, SYP121

SU GO:0045333 Cellular respiration 7.65 3 1023 NAD6, COB, NAD7
GO:0050832 Defense response to fungus 7.65 3 1023 PRL1, BAK1, NPR1, COI1
GO:0010043 Response to zinc ion 1.49 3 1022 CXIP4, At3g22460
GO:0031348 Negative regulation of defense

response
1.49 3 1022 NPR1, COI1

GO:0048440 Carpel development 1.49 3 1022 SHP2, SHP1
PS GO:0009658 Chloroplast organization 4.40 3 1028 CRB, GPRI1, PMI2, CLPP4, CLPC, FTSZ1-1,

CLPP6, ATTIC110, CPN60A
GO:0019253 Reductive pentose phosphate cycle 5.69 3 1027 SBPASE, CP12-2, GAPBGAPB, TIM, At3g04790
GO:0045038 Protein import into chloroplast

thylakoid membrane
3.74 3 1026 FFC, CAO, ALB3, PSB29

GO:0017038 Protein import 3.74 3 1026 FFC, CAO, ALB3, CLPC, PSB29, ATTIC110
GO:0010207 PSII assembly 2.74 3 1025 LPA2, PSBO1, PSBO-2, PSB29
BP keyword Signaling PKS1, ARR16, ARR4, ARR15, NDPK2, PIF4,

ARR9, BRL2, ARR6, SGT1B
BP keyword Light PKS1, PSBO-2, JAR1, PMI2, PSBO1, ARR4, CAB2,

PRN, NDPK2, RBCS1A, PIF4, KAT2, ROC4, CAO
DP GO:0009908 Flower development 2.53 3 1027 ZTL, LUG, GCR1, MP, AP1, ARF8, HTA11, SEP1,

SEP3, SEP2, DCL1
GO:0048364 Root development 1.07 3 1025 NIP3;1, NPH4, HBT, XLG3, PIN7, AGG1, AGB1,

LHW, MP, JKD
GO:0009736 Cytokinin-mediated signaling 1.84 3 1025 AHP2, NIP3;1, AHP1, ARR1, KNAT2, ARR10,

AHK2
GO:0048437 Floral organ development 2.62 3 1025 NUA, ROXY1, STM, ATPGP1, AFB3, AG, AP3
GO:0009909 Regulation of flower development 2.62 3 1025 ESD1, NUA, ELF3, UBC1, SEU, BRI1, CRY2,

CIB5, CLV2

(Table continues on following page.)
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percentage of PS and DP genes is conserved in mul-
ticellular plants. These observations are consistent
with their biological functions. The rate of conserved
V-ally proteins from alga to Arabidopsis is signifi-
cantly higher than that of R-ally proteins (Fisher’s
exact test, P = 2.39 3 1023). Therefore, V-ally is con-
served in plants while R-ally is more specific to ad-
vanced plants. The SU module was associated mainly
with defense responses, which seems to be unrelated
to the floral transition and was found to be the least
conserved module in multicellular plants.

Seeking Floral Switches through the Module Interface

The Definition of Module Interface

In this work, the interface between two modules
represents the corresponding PPIs between two mod-
ules. For example, the VP-RP interface denotes the
interacting protein pairs between VP and RP. More-
over, the VP interface proteins represent those proteins
in the VPmodule that have interactions with any other
module, and the VP-RP interface proteins specify
those proteins that are involved in PPIs between VP
and RP. We refer to the interface between V-ally and
R-ally as the V-R interface.

Module dissection is likely to be a provisional com-
partmentalization of biological roles in the cellular
network (Tu et al., 2005; Wu et al., 2009). NP network
modules may stand for different cellular states during a
certain biological process and may control the cellular
switch through their interface (Xia et al., 2006). Many
floral promoting or repressive genes have been identi-
fied previously, and some of them appear on the
module interface of our NP network. Interestingly,
inhibition of the V-ally interface gene EARLY IN SHORT
DAYS4 (ESD4) has been shown to promote the floral

transition, while inhibition of the R-ally interface gene
SUPPRESSOR OF OVEREXPRESSIONOF CO1 (SOC1)
leads to the opposite result (Henderson and Dean,
2004). These two genes, together with FT, PHOTOPE-
RIOD-INDEPENDENT EARLY FLOWERING1 (PIE1),
and SHORT VEGETATIVE PHASE (SVP), are all pres-
ent on the V-R interface. All five genes participate in
regulation of the floral transition and are potential
floral switches (Henderson and Dean, 2004). These
findings highlight the importance of the V-R interface
during the plant vegetative/reproductive transition.
In subsequent sections, we discuss how the network
modules in our NP network, especially V-ally and
R-ally, control the floral switch through their interface.

Degree of the Interface Proteins

The number of connected neighbors of a node is
defined as degree, which is a key parameter in char-
acterizing the network topology. In our work, we
found that the probability [P(k)] of nodes having a
degree of k follows the scale-free topology [P(k) w
0.56k21.96]. The scale-free topology is one of the most
significant features of the PPI network, which is typ-
ically characterized by many nodes with few links and
only a few highly connected nodes (Jeong et al., 2001).
Those highly connected proteins are called hubs,
which generally play central roles in the network
(He and Zhang, 2006). We defined the first 2.5% of
highly connected proteins as hubs. Interestingly, 79%
of the hub proteins are localized on the V-R interface,
which indicates the importance of that area. Moreover,
we also found that the V-ally and R-ally proteins
on the V-R interface have higher degrees than their
intramodule counterparts (Mann-Whitney U test, P =
7.77 3 10216 for V-ally, P = 8.45 3 1027 for R-ally). The
degrees of V-ally proteins on the V-R interface are 1.9

Table I. (Continued from previous page.)

Module GO Accession No. GO Term q Value Gene

BP keyword Response NPH4, ATTRX3, CRY1, AGG1, HUB1, CAT2,
RIN13, HD1, RPM1, BAG6, ATPGP1, PHYB,
RPS2, ATMPK6, AGB1, NPR4, BZO2H1,
PUB17, CRY2

RP GO:0009742 Brassinosteroid-mediated signaling 3.22 3 1027 GRF2, TTL3, GRF6, GRF8, BZR1, BES1, ASKdZeta
GO:0048827 Phyllome development 1.74 3 1025 RPN12A, TCP10, HSP81-2, AN3, AtGRF5,

AtGRF1, CDC2B, NHX1, RBR1
GO:0007126 Meiosis 2.45 3 1025 ATDMC1, BRCA2V, BRCA2, ATRAD51C, SKP1
GO:0009909 Regulation of flower development 5.65 3 1025 COL2, SEF, ATFYPP3, TFL1, SOC1, FD, FUL, CAL
GO:0009966 Regulation of signal transduction 5.65 3 1025 ATCDPK2, RGL1, CIPK15, EBF2, RCN1,

PLDALPHA1, GAI
BP keyword Signaling GAI, At3g02880, RPT5B, RKL1, AT3G56370, ECT1,

ETO1, RGL3, FLS2, RCN1, RAX2, CAM7, CIPK15,
ATCDPK2, EDS1, ATHXK1, JAZ3, CAM8,
PLDALPHA1, AHBP-1B, RGL1, LFY, ATCUL1,
HFR1, PIL5, At1g68400

BP keyword Assembly TAF4, EIF3E, TAF13, HTB2, TBP2, XPO1A,
FUS6, NAP1;2, CSN6A, ATCUL1, FUS5,
CSN6B, HTA2
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times those of other V-ally proteins, while the degrees
of R-ally proteins on the V-R interface are 2.6 times
those of other R-ally proteins. The unusual high de-
gree distribution of V-R interface proteins implies their
critical roles in the NP network. One explanation of
this phenomenon is that highly connected network
components, such as protein complexes, may lie on the
V-R interface.

Some Protein Complexes Formed by the V-R Interface
Proteins Are Involved in Floral Transition Control

Undoubtedly, the established Arabidopsis PPI data
set should contain many protein complexes. Although
some protein complexes that have no significant gene
expression correlation among their members were
discarded when we constructed the NP network, there
may still be some complexes on the V-R interface that
are due to the unusual high degree distribution of the
interface proteins. Since core members of a protein
complex tend, in most cases, to have correlated gene
expression profiles (Dezso et al., 2003), we attempted
to find core members of potential protein complexes
by identifying network clusters from the subnetwork
consisting of only positive interactions in the NP
network. The network clusters identified here are
densely connected areas in the subnetwork. A total
of 28 network clusters were detected (Table III). In-
deed, protein complexes were found to exist in some
of these 28 clusters. For instance, cluster 9 contains
three experimentally validated complexes, including
SHORT ROOT (SHR)/SCARECROW (SCR), SHR/
SCR/JACKDAW (JKD), and SHR/SCR/MAGPIE
(MGP; Welch et al., 2007). A G-protein heterotrimer
is also formed by the three proteins in cluster 21
(Perfus-Barbeoch et al., 2004).
Most of the identified clusters contain V-R interface

proteins, which is consistent with the hypothesis that
the high degrees of interface proteins are caused by
the existence of protein complexes (Table III). Two pro-
tein complexes, CYCLIN-DEPENDENT KINASE A;1

(CDKA;1)/CYCLIN D1;1 (CYCD1;1)/KIP-RELATED
PROTEIN1 (ICK1) and CYCLIN D2;1 (CYCD2;1)/
CYCLIN-DEPENDENT KINASE B2 (CDKB2;1),
formed by members of cluster 25 and their directly
interacting proteins outside of the cluster, are found to
pass through the V-R interface and may participate in
cell cycle regulation (Verkest et al., 2005). Two V-R
interface proteins, HISTONE MONO-UBIQUITINA-
TION1 (HUB1) and HUB2, members of cluster 23, may
first form a heterotetramer. Then, together with an-
other member of cluster 23, UBIQUITIN CARRIER
PROTEIN1 (UBC1), and a neighbor of cluster 23,
UBIQUITIN-CONJUGATING ENZYME2 (ATUBC2),
they cause histone H2B monoubiquitination in the
chromatin of FLOWERING LOCUS C (FLC). This pro-
cess can regulate FLC gene expression and control
flowering time in Arabidopsis (Cao et al., 2008). More-
over, many other protein complexes that were re-
ported to regulate the floral transition process are
found on the V-R interface, which will be further
detailed in the following subsection.

The Distribution of MADS Box Proteins Indicates the
Importance of the Module Interface in the Floral
Transition Process

The module interface might be the place where
different cellular states coordinate with each other (Xia
et al., 2006). Molecular machines existing on the V-R
interface may play roles in regulating plant vegeta-
tive/reproductive growth. Many protein complexes
that appear on the V-R interface have unknown bio-
logical roles in the floral transition process. The over-
represented distribution of MADS box transcription
factors in the NP network (Fisher’s exact test, P = 2.23
10216) may better explain how these modules, espe-
cially V-ally and R-ally, control the floral transition
through their interface. One hundred seven MADS
box genes were identified by a thorough genome
sequence analysis of Arabidopsis; 46 of them are in
the NP network. Due to the ancestral gene duplication

Table II. The module partitions inferred from the established NP network and some control experiments

Each control experiment was repeated 100 times, and P values were computed through a one-sample t test.

Treatment

Protein/Module
Intramodule

PPI/Module
No. of Modules

Overlap

with the

Established

NP Network

No. of

Pseudomodulesa

Average P Average P Average P

The established NP network 193.3 – 65.4 – 7 – – 0/1
Shuffle among genesb 142.0 3.45 3 10237 34.9 4.43 3 10247 9.1 1.07 3 10223 68.9% 18/100
Shuffle expression valuesc 71.6 3.80 3 102102 8.6 5.50 3 102135 14.4 6.91 3 10241 56.5% 45/100
Shuffle PCCsd 15.6 8.60 3 102200 0.4 8.10 3 102281 90.4 2.03 3 10289 74.9% 100/100
Randomized networke 178.1 8.23 3 1025 53.1 1.58 3 1029 7.7 1.50 3 1025 63.6% 19/100

aThe pseudomodule represents the module with few intramodule interactions. bThe control experiment was performed by shuffling expression
profiles among genes. cThe control experiment was carried out by shuffling expression values of each gene among different time points. dThe
control experiment was performed by shuffling PCC values among PPIs. eWe randomized the NP network while keeping the degree distribution,
which was used to test whether an artificial network that has the same topology as the established NP network can result in the same module
partition.
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that occurred before the divergence of plants and
animals, there are two types of MADS box genes (type
I and type II). Generally, only type II MADS box genes
are believed to be associated with flower development
(Parenicova et al., 2003), which is apparent in our NP
network, as the majority of MADS box gene-related
PPIs are formed between type II proteins (Fig. 2).

Two clusters (clusters 2 and 14) are formed by type II
MADS box proteins in the NP network (Fig. 2; Table
III); they are based on two seed proteins, APETALA1
(AP1) and FRUITFULL (FUL), respectively. As the
base of a cluster, removal of a seed protein will lead to
destruction of the cluster (Bader and Hogue, 2003).
These two seed proteins are important for the floral
transition process (Bernier and Perilleux, 2005). Nearly
all other MADS box proteins that connect with these
two clusters are also type II. Most of the members in
clusters 2 and 14 are R-ally proteins, and some of them
are interface proteins (Fig. 2). Previous studies have
shown that these proteins are directly or indirectly
involved in flowering control (Immink et al., 2009).
Cluster 17 is formed by three type I proteins and is
isolated from the V-R interface. Their neighboring
MADS box proteins are also type I (Fig. 2). This clear
separation of the two types of MADS box proteins in
the NP network is consistent with their different
evolutionary traits. Generally, type I proteins are in-

volved in gametophyte and embryo development, and
members of cluster 17 have not been reported to be
involved in floral transition control (Parenicova et al.,
2003).

Recently, the yeast three-hybrid method has been
utilized to identify MADS box trimers (Immink et al.,
2009). Three trimers, SHATTERPROOF1 (SHP1)/
SEPALLATA3(SEP3)/SVP, SOC1/AGAMOUS-LIKE19
(AGL19)/AGL17, and SEEDSTICK (STK)/SEP3/SVP,
pass through the V-R interface, implying their poten-
tially crucial roles in floral induction. Indirect experi-
mental evidence can be found to support such a role for
two of the trimers. Immink et al. (2009) pointed out that
SHP1/SEP3/SVP might function as a negative autor-
egulatory loop to repress floral development. A recent
investigation utilizing ChIP-chip technology showed
that SHP1 and SVP are target genes of SEP3, which
further supported the hypothesis of Immink et al. (2009)
regarding this complex (Kaufmann et al., 2009). They
also reported that the protein complex SOC1/AGL19/
AGL17 participates in regulation of the floral transition,
since all three members play roles during the floral
transition process (Immink et al., 2009). So far, the
function of the protein complex STK/SEP3/SVP has
not been experimentally determined. Here, we expect
that it might repress flowering development, because
it has the same architecture as the protein complex

Table III. Clusters in the NP network

Clusters containing R-ally proteins on the V-R interface are shown in boldface, while clusters containing
V-ally proteins on the V-R interface are underlined.

No. Seed Members Modules

1 ATHB25 ATHB23, ATHB29, ATHB28, ATHB33, ATHB34,
ATHB31

DP, MR, RP

2 AP1 SEP1, AGL42, SEP2, AGL6, AG, AGL21 DP, RP
3 BLH2 KNAT3, ATOFP1, BLH1, BLH4 VP, MR
4 BRCA2V ATDSS1, ATRAD51, BRCA2, ATDMC1 RP
5 AFP3 AFP2, TMAC2, EEL, AFP1 MR
6 DRB5 DCL1, HYL1, DRB2 DP, MR
7 BZO2H3 ATBZIP53, BZO2H2, GBF5 MR, DP, RP
8 TAF12 TAFII15, TAF12B, TAF6B DP, MR
9 JKD SHR, MGP, SCR DP, RP

10 PGR5-LIKE A ATLFNR2, ATLFNR1, FEDA VP, PS
11 SR1 RSZ33, SCL30, SRZ21 DP, SU
12 ACS8 ACS4, ETO3, ACS7 MP
13 ATPHB1 ATPHB3, GAMMACA3, ATPHB6 MP, RP
14 FUL PI, SOC1, AP3, SEP3 DP, RP
15 AT5G65260 AT5G10350, ATPABN1 RP
16 ATGID1B, SLY1, GAI DP, MR, RP
17 AGL62 AGL86, AGL90 DP, MP
18 ATCHS F3H, FLS MR, RP
19 ATTOC34 ATTOC120, ATTOC132 DP, RP
20 TFL1 FDP, FD MR, RP
21 AGG1 AGB1, GPA1 DP
22 GAPA CP12-2, PRK PS, MR
23 HUB1 HUB2, UBC1 MR, DP
24 AKT1 CIPK23, AT1G07430 VP
25 CYCD1;1 CDKB2;1, CDKA; 1 RP, MR, DP
26 FTSZ2-1 FTSZ1-1, ARC6 PS, VP
27 OBF5 NPR4, TGA3, ROXY1 DP, VP, MR
28 AT1G32150 GBF4, GBF3, GBF2 DP, MR
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SHP1/SEP3/SVP (D function gene/SEP3/SVP). How-
ever, we are still not able to determine whether an
autoregulatory loop also exists in this protein com-
plex, because, according to a recent study, STK is not
a target gene of SEP3 (Kaufmann et al., 2009). Taken
together, MADS box proteins on the V-R interface
provide an example that shows the importance of the
module interface in the plant vegetative/reproductive
growth phase switch.

Some Pathways Related to Flowering Pass through the
V-R Interface

We analyzed the enriched biological functions of
V-ally and R-ally interface proteins on the V-R inter-
face. Interestingly, these two groups of proteins share
several GO terms that are related to flowering, such as

photoperiodism, regulation of photomorphogenesis,
and regulation of flower development (Table IV).
However, this kind of sharing cannot be observed
between intramodule proteins, indicating that the
interactions between V-ally and R-ally might be a
step in flowering pathways crossing the V-R interface.
We identified 15 potential signaling pathways through
calculation of the entire NP network. Eight pathways
pass through the V-R interface, and we expect that
these eight pathways are involved in flowering control
(Fig. 3).

Some of the pathways have been experimentally
identified to be involved in the control of flowering
time. For example, pathway 6, which starts from the
DP module (CRYPTOCHROME2 [CRY2] or PHYTO-
CHROME B [PHYB]), passes across the RP and VP
module (CONSTITUTIVE PHOTOMORPHOGENIC1

Figure 2. MADS box proteins in the NP network. Type I MADS box proteins are separated from type II MADS box proteins. Type
II MADS box proteins are mainly distributed on the V-R interface. The corresponding color scheme is the same as in Figure 1A.
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[COP1] and SUPPRESSOR OF PHYA-105 1 [SPA1]),
and ends at the MR module (CONSTANS [CO] or
ELONGATED HYPOCOTYL5 [HY5]; Fig. 3), is a pho-
toperiod pathway that plays a central role in flowering
control (Lagercrantz, 2009). CO is a key protein in
photoperiod sensing in Arabidopsis, and accumula-
tion of CO can promote flowering. Various molecules
regulate the expression level of CO to ensure that
flowering occurs under optimal environmental condi-
tions (Lagercrantz, 2009). SPA1, a WD-repeat protein
with a major role in the suppression of photomorpho-
genesis, is known to act in CO degradation together
with a component of a ubiquitin ligase, COP1. Muta-
tions in cop1 cause extreme early flowering during
short days (Jang et al., 2008). A starting point of
pathway 6, CRY2, is responsive to blue light and
accelerates CO protein levels through the repression of
degradation, which initiates the floral transition (Liu
et al., 2008). Another start point, PHYB, can inhibit
CO protein accumulation independently of COP1
(Lagercrantz, 2009).

Pathway 11 shows the biological relationship be-
tween photoperiod and gibberellin signaling. This
pathway starts with a DP protein (PHYB), passes
through a PS protein (PHYTOCHROME-INTERACT-
ING FACTOR4 [PIF4]), and ends with an MP protein
(REPRESSOR OF GA1-3 1 [RGA1]; Fig. 3). With func-
tions in hypocotyl elongation control, chlorophyll
biosynthesis, and seed germination (de Lucas et al.,
2008), PIF4 is a bHLH protein containing three do-
mains, a phytochrome-binding domain, a DNA-
binding domain, and a basic helix-loop-helix domain
(Lucyshyn andWigge, 2009). RGA1 was reported to be
a central repressor in the control of hypocotyl growth
and stem elongation. It is likely to be a transcriptional
regulator that represses the gibberellin signaling path-
way through inhibition of the transcription of gibber-
ellin-inducible genes (Cheng et al., 2004). PHYB can be
transported from the cytoplasm to the nucleus upon
irradiation, where it binds with PIF4 and leads to

proteasome-mediated degradation of PIF4 to repress
hypocotyl growth. RGA1 interacts with the PIF4
bHLH DNA recognition domain and may block PIF4
DNA-binding ability. Thus, RGA1 functions indirectly
as a transcription factor through PIF4 (Mutasa-
Gottgens and Hedden, 2009). This pathway may re-
veal cross talk between photoperiod signaling and
gibberellin signaling during the floral transition pro-
cess. In the NP network, PIF4 is in the V-ally and is
down-regulated during the floral transition process,
while its anticorrelated interacting partner, PHYB, is
in the R-ally.

Table IV. Shared GO enrichment between V-ally and R-ally proteins on V-R interface

GO Term Description V-ally Interface Proteins R-ally Interface Proteins

GO:0031461 Cullin-RING ubiquitin ligase complex RBX1, IAA7, TIR1 EBF2, GRH1, SKP1, ZTL, ASK4,
ATCUL3B, ASK2

GO:0009736 Cytokinin-mediated signaling ARR9, ARR15, ARR6, ARR4,
ARR5, WOL, ARR7

AHP3, ARR2, AHP2, KNAT2, AHK2

GO:0048581 Negative regulation of
postembryonic development

GPRI1, GLK2, SPA1, PIE1, SVP DET1, NUA, ESD1

GO:0009648 Photoperiodism WNK8, FT, SPA1 COP1, CAT2, ZTL
GO:0004673 Protein His kinase activity WOL, ATHK1 PHYB, AHK2
GO:0009909 Regulation of flower development ESD4, FT, GPRI1, GLK2, PIE1, SVP CAL, CIB5, NUA, ESD1
GO:0010099 Regulation of photomorphogenesis STH3, SPA1 CAM7, DET1
GO:0009637 Response to blue light RBCS1A, PHOT1, GI, IAA19 LSH1, NPH4, PHYB
GO:0051592 Response to calcium ion SOS3, CAM9, CAM1 CAM8, CAM7
GO:0019005 SCF ubiquitin ligase complex RBX1, IAA7, TIR1 EBF2, GRH1, SKP1, ZTL, ASK4,

ATCUL3B, ASK2
GO:0019932 Second messenger-mediated signaling CAM9, CBL2, CBL1, CBL6 CAM8, CAM7

Figure 3. Potential signaling pathways in the NP network. Signaling
pathways that have the same medium step are merged into one group.
Pathways 12 and 12# share a medium step but have at least one
interaction with an opposite correlation. The corresponding color is the
same as in Figure 1A. The red arrow represents the correlated interac-
tion, while the green arrow represents the anticorrelated interaction.
Right arrows represent the interaction between upstream and down-
stream protein. Double-headed arrows represent the interaction be-
tween transcriptional factors. “A|B” represents A or B.
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Although all PPIs were extracted from the literature
and some proteins in our identified pathways have been
individually reported to play a role in flowering, the
majority of identified pathways themselves have not yet
been discovered. Detection of these pathways should be
attributed to the advantage of integrating PPIs and gene
expression profiles. In addition to pathways 6 and 11,
other pathways across the V-R interface should play
potential roles in the regulation of vegetative/repro-
ductive growth. For instance, three pathways (pathways
1, 2, and 10) related to cytokinin signalingwere found to
pass through the V-R interface (Fig. 3). Previous studies
showed that cytokinins are associated with floral in-
duction (To and Kieber, 2008). Plants deficient in cyto-
kinins may not start reproductive growth until death.
Although there is no direct experimental evidence that
pathways 1, 2, and 10 have functions in flowering
control, they provide new clues to explore how cytoki-
nin signaling regulates flowering time.

Limitations of Current Work and Future Perspectives

One major limitation of the current NP network
analysis is the quality and data bias of the established
Arabidopsis interactome. Although the established
interactome was based on experimentally deter-
mined PPIs, it certainly contains some false positives
(Shoemaker and Panchenko, 2007). Furthermore, data
bias may also inevitably exist in the established
interactome. On the one hand, the established Arabi-
dopsis PPI data set is far from complete, and only
strongly correlated or anticorrelated interactions were
used to construct the NP network. Thus, genes not
included in this work may also be involved in floral
transition regulation. On the other hand, the established
Arabidopsis PPI network may also be overrepresented
by some biologically important proteins, since PPIs
related to these proteins were often experimentally
investigated with higher priority. For instance, flowering-
related genes are indeed overrepresented in the estab-
lished interactome. However, we found that the
flowering-related genes are enriched in the V-R inter-
face even in comparison with all genes involved in the
established Arabidopsis interactome (data not shown),
suggesting that the overrepresentation of flowering
regulators in the module interfaces is not merely
caused by the data bias of the established Arabidopsis
interactome.
The reliability of the established NP network can also

be affected by the quality of the transcriptome data
used in this work (i.e. the microarray data of Schmid
et al. [2003]). Generally, microarray data are often
reported to be not reproducible (Shi et al., 2008). Al-
though we used another independent microarray data
set with similar experimental conditions to validate
the data set of Schmid et al. (2003), such validation can
only provide indirect evidence. The quality of their
data set remains to be further experimentally verified.
Undoubtedly, more high-throughput interactome or

transcriptome data from the floral transition process

will be generated in the near future, which will allow
us to conduct a more comprehensive analysis of inte-
grating the Arabidopsis interactome and the gene
expression data. Therefore, we proposed a new pipe-
line for reconstructing the NP network by integrating
more interactome or transcriptome data in the future
(Supplemental File S4).

CONCLUSION

By integrating Arabidopsis PPIs and gene expres-
sion data, we constructed the NP network to investi-
gate the dynamics of the PPI network during the floral
transition process. Interestingly, two kinds of tran-
scriptionally anticorrelated modules, V-ally and R-ally,
were identified, in which vegetative growth and re-
productive growth genes, respectively, are enriched.
V-ally includes two down-regulated modules (VP and
PS), and R-ally contains two up-regulated modules
(RP and DP). R-ally module genes are generally more
specific to advanced plants, whereas V-ally module
genes are conserved in plants. These modules may
stand for alternative cellular states of Arabidopsis
because they display alternatively lower or higher
expression levels during the floral transition process
and are enriched in vegetative or reproductive growth
genes. Many V-R interface proteins were found to
participate in floral transition control through the
formation of protein complexes or signaling pathways.
These findings suggest that the two cellular states do
indeed coordinate with each other through their
interacting interface. To the best of our knowledge,
this is the first time that the plant floral transition
process has been investigated at a genome-wide net-
work level. The identification of Arabidopsis cellular
phase switches on the module interface will help to
decipher the molecular mechanism of flowering.

MATERIALS AND METHODS

Data Sources

The Arabidopsis (Arabidopsis thaliana) PPI data set was extracted from the

following three public databases: TAIR interactome 2.0 (ftp://ftp.arabidopsis.

org/home/tair/Proteins/Interactome2.0/), IntAct (version of May 2009;

http://www.ebi.ac.uk/intact/), and BioGrid (release 2.0.52; http://www.

thebiogrid.org/downloads.php). In 2008, Arabidopsis PPI data stored in

BIND (Willis and Hogue, 2006), IntAct, and BioGrid were integrated into TAIR

interactome 2.0. Although TAIR released a new Arabidopsis genome version

and updated its PPI data in June 2009, the newly updated PPI data were

derived only from TAIR and BioGrid. The number of PPIs in the new TAIR

version is much smaller in comparison with TAIR interactome 2.0. Therefore,

we decided to use TAIR interactome 2.0 to build the Arabidopsis PPI data set.

For a more comprehensive Arabidopsis PPI data set, moreover, the PPI data in

IntAct (version of May 2009) and BioGrid (release 2.0.52) were also used to

build the Arabidopsis PPI data set. Genetic interactions and predicted PPIs

were not taken into account.

Gene expression data were obtained from Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS453). Four sam-

ples were collected from the Arabidopsis shoot apical meristem at 0, 3, 5, and

7 d. Each sample was measured twice. Thus, the gene expression profile

contained eight expression values. The expression data of the Col-0 wild type
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grown at 21�C was used in our analysis. Only 150 Arabidopsis (Col-0) genes

do not have corresponding probes on the array.

Construction of the NP Networks

PCC was calculated for each pair of interacting proteins. For each pair of

interacting proteins, the PCC between the gene expression profiles was

calculated as follows:

PCC ¼ +xy2

�
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��
+y

�
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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where x and y represent the corresponding expression profiles of two

interacting proteins and n denotes the number of data points in an expression

profile. In this work, n = 8. Only PPIs with PCC . 0.4 were used to build the

NP network. Self-interactions and those without corresponding gene expres-

sion profiles were further removed from our analysis. Cluster and Treeview

(Eisen et al., 1998) were utilized to cluster the gene expression profiles of the

proteins in the NP network, with parameters “-l -cgm -ng -cam -na -g 1 -e 1 -m

m,” and view the clustering result, respectively. We scanned from the top of

the hierarchical tree to obtain groups of genes that had less than 5% intragroup

anticorrelated interactions. These groups of genes were referred as modules at

the network level.

GO Enrichment Analysis

Arabidopsis GO information was downloaded from TAIR (ftp://ftp.

arabidopsis.org/home/tair/Ontologies/Gene_Ontology/) on May 20, 2009.

According to the GO database archive, we added all father nodes for each

Arabidopsis GO term. Only the term in the sixth depth was considered, because

the number of GO terms in this depthwas the largest among depths 4 through 8.

GO enrichment was calculated as follows through Fisher’s exact test:

p ¼ ðaþ bÞ!ðcþ dÞ!ðaþ cÞ!ðbþ dÞ!
ðaþ bþ cþ dÞ!a!b!c!d!

where a is the number of genes with the tested GO term in a module, b is the

number of genes without that GO term in the module, c is the number of genes

with the tested GO term in the entire genome, and d is the number of genes

without the tested GO term in the entire genome. The resulting P value was

corrected through the q value software in the R package (Storey and

Tibshirani, 2003). To filter GO terms that are generally associated with all

genes, only the GO terms satisfied with the following condition were used,

according to the Bonferroni correction:

�
The number of genes associatedwith theGO term

The number of genes in the genome

�2

,
0:05

The number ofGO terms in the genome

Sequence Conservation Analysis

Arabidopsis genome sequences were downloaded from TAIR 8 (ftp://ftp.

arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR8_blastsets/

TAIR8_pep_20080412). Populus trichocarpa and Physcomitrella patens ge-

nome sequences were obtained from Refseq release 34 (http://www.ncbi.

nlm.nih.gov/RefSeq/). Chlamydomonas reinhardtii and Monosiga brevicollis

genome sequences were downloaded from the Joint Genome Institute

(http://genome.jgi-psf.org/). The protein sequences in the NP network

were BLASTed against other genomes to identify homologs with an e

value cutoff of 10212 and a sequence identity cutoff value of 25%.

Identification of Protein Complexes and Pathways in the
NP Network

To find potential protein complexes, the subnetwork containing only

positive PPIs was clustered using MCODE (Bader and Hogue, 2003) with

default parameters. We defined a potential signaling pathway using the

following criteria. First, a potential pathway should start with a gene anno-

tated with the GO term “receptor binding or activity” or be directly described

as “transmembrane protein kinase.” Second, a potential pathway should end

with a transcription factor. Third, genes in the middle of the pathway should

be annotated with the GO term “signal transduction” or “response to abiotic

or biotic stimulus.” Finally, the pathway length was restricted to a range of

three to five genes.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental File S1. A table listing all Arabidopsis PPIs, data sources,

and corresponding PCC values.

Supplemental File S2. A Cytoscape session file of the NP network.

Supplemental File S3.A table showing a comparison of the seven network

modules in our work with the newly identified network modules using

more stringent PCC cutoffs.

Supplemental File S4. A text file that describes a pipeline for reconstruct-

ing the NP network by integrating more interactome or transcriptome

data.
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