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Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine
signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms,
identification of substrates and specific acetylation sites is crucial. Experimental identification is often
time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a
high-throughput manner to generate relatively precise predictions. Here we develop a method termed as
SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine
sequence-derived and functional features with two-step feature selection. Feature importance analysis
indicates functional features, applied for lysine acetylation site prediction for the first time, significantly
improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and
identify many high-confidence putative substrates that are not previously identified. The results along with
the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and
facilitate hypothesis-driven experimental design and validation.

L
ysine acetylation is an important type of reversible post-translational modification (PTM) that takes place in
the e-amino group of lysine residues in proteins. Regulation of lysine acetylation is activated by a highly
balanced enzyme system. In this system, lysine acetyltransferases (KATs) transfer the acetyl group to the e-

amino group of lysine, while lysine deacetylases (KDACs) or histone deacetylases (HDACs) remove these acetyl
groups1. Around 50 years ago, lysine acetylation of nuclear histones was discovered2–4, followed by the successive
identification of several acetylation sites in histones. Research over the past five years has shown that this
reversible covalent modification is strongly related to cell regulation. During this period, more than 2,000
proteins, including kinases, transcription factors, ubiquitin ligases, structural proteins, ribosomal proteins and
metabolic enzymes, have been identified as acetylated, not only in histones but also in the cytoplasm of mam-
malian cells5–7. These proteins are critical for a variety of cellular activities, ranging from the DNA damage
checkpoint, cell cycle control, and cytoskeleton organization to metabolism and endocytosis. Lysine acetylation
is crucial for both nuclear and cytoplasmic processes8. Most major enzymes involved in the tricarboxylic acid
cycle (TCA) cycle, nitrogen metabolism, fatty acid oxidation, urea cycle, glycolysis, gluconeogenesis and glycogen
metabolism undergo lysine acetylation5.

Our understanding of the regulatory roles of lysine acetylation remains nebulous. Identification of acetylation
sites is an essential first step towards elucidation of the mechanism underlying protein acetylation. A number of
experimental methods have been accordingly developed to determine potential acetylation sites, including the
radioactive chemical method9, mass spectrometry10, and chromatin immunoprecipitation (ChIP)11. However,
these conventional experimental techniques are laborious, time-consuming and usually expensive12. Several high-
throughput experimental methods such as mass spectrometry-based proteomics also provide a better and larger
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coverage of proteome-wide acetylation sites13. As an alternative
approach, computational prediction methods are more efficient
and applicable for large-scale high-throughput screening of novel
acetylation substrates.

A variety of computational approaches have been developed to
predict lysine acetylation sites12,14–24. For example, Basu et al.12

developed a prediction method, PredMod, that combines experi-
mental approaches with clustering analysis to predict protein acet-
ylation, based on the characteristics of residues surrounding
acetylated lysines. Clustering of sequences in histones and nonhis-
tones was used to represent a local amino acid sequence composition.
Xu and colleagues18 developed a novel approach, Ensemble-Pail,
which implemented an ensemble support vector machine (SVM)
classifier with encoded features based on positional weight matrices
(PWMs). A two-stage SVM-based classifier, N-Ace, proposed by Lee
et al.19, was applied to identify protein acetylation sites based on
features combining the physicochemical properties of proteins with
accessible surface area. Suo et al.16 developed a position-specific
SVM-based method, PSKAcePred, with features that included
information on amino acid composition, evolutionary similarity
and physicochemical properties to predict lysine acetylation sites.

In their study, entropy values were used to select or exclude residues
around the acetylation sites. Although significant progress has been
achieved in predicting acetylation sites, the existing methods have
certain drawbacks: (i) The regulation mechanism of lysine acetyla-
tion differs among species, especially between prokaryotes and
eukaryotes25. Therefore, sequences or structural patterns around
the acetylation sites may significantly differ in different organisms.
However, the majority of existing studies disregarded the differences
between species by considering all species-specific acetylation sites as
generic sites to build a simplified model; (ii) Most existing models are
established using machine learning techniques, such as SVM.
However, not all features are equivalently important for the perform-
ance of the trained model; redundant features will reduce the per-
formance of the model. Accordingly, feature selection is generally
required for removing redundant features and improving prediction
performance. However, limited studies have involved this procedure
to gain insights into the relative significance and contributory effects
of various features; (iii) Most earlier studies only extracted features
based on the sequence environment around the acetylated lysine, but
failed to consider those descriptive of the whole protein that play a
decisive role in determining the fate of a protein in terms of lysine

Figure 1 | Sequence logo illustration generated by IceLogo to show the occurrences of amino acid residue types surrounding the acetylation sites for six
different species, including H. sapiens, M. musculus, E. coli, S. typhimurium, S. cerevisiae and R. norvegicus.
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acetylation, especially for those involved in different cell processes.
The next generation of computational methods thus needs to address
the above drawbacks in order to generate more accurate models for
the efficient identification of species-specific lysine acetylation sites.

Here, we present a novel approach to predict species-specific
lysine acetylation sites, based on the random forest (RF) algorithm,
termed SSPKA (Species-Specific Prediction of lysine (K)
Acetylation). In particular, our method incorporates various inform-
ative features, including sequence-derived features, predicted sec-
ondary structure and relevant functional features at both amino
acid residue and protein levels, coupled with a two-step effective
feature selection method, to assemble an optimal feature set for
building the prediction model. SSPKA is benchmarked with other
existing methods using both 5-fold cross-validation and independent
tests. A user-friendly web server and the local Java tool of SSPKA are
freely accessible at http://www.structbioinfor.org/Lab/SSPKA for the
wider scientific community. A flowchart of the developed SSPKA
approach is given in Supplementary Fig. S1.

Results
Analysis of sequence-level determinants of acetylation site speci-
ficity. Based on the curated datasets, we analyzed the sequence
surrounding the lysine acetylation sites and plotted a sequence
logo (Fig. 1) for the six different species using IceLogo26, with the
aim of identifying distinct patterns or conserved sequence motifs
between acetylation and background sites26.

The sequence logo indicates the existence of distinct sequence
patterns between the six species. In Fig. 1, the large ‘K’ represents
the centered acetylation site. Apparently, a primary feature of the site
specificity across all six species is the requirement that other lysine
residues are located proximal to the centered acetylation site. In
particular, ‘K’ is preferred at position 14 in all six species, and this
is more pronounced in H. sapiens and S. typhimurium, where ‘K’
tends to appear across all positions following the centered acetylation
site, i.e., from 11 to 15. In addition, ‘K’ is favored at positions 25,
24 and 21 in S. cerevisiae and S. typhimurium. Other residue types
in addition to ‘K’ are also observed. One example is residue ‘R’,
favored at position 11 in H. sapiens and M. musculus, 21 in S.
cerevisiae, and 21 and 22 in R. norvegicus, respectively. Residue
‘G’, as another example, is favored at position 21 in eukaryotes such
as H. sapiens, M. musculus and S. cerevisiae. On the other hand, we

observe several residues that are disfavored using IceLogo. For
instance, residue ‘L’ is disfavored at positions 26, 24, 3, 5 and 6 in
E. coli, and position 24 in R. norvegicus, respectively, whereas res-
idue ‘D’ is not favored at position 22 in S. cerevisiae. Altogether,
these results highlight the necessity and significance of addressing
the task of precise lysine acetylation site recognition by developing
species-specific predictors.

Two-step feature selection via random forest. As heterogeneous
features are often noisy and redundant27, leading to an adverse
impact on model training, such as decreasing performance, we
performed feature selection to remove redundant features and
assess those important for prediction performance. In particular, a
two-step feature selection method was applied in our study. We have
recently applied this two-step feature selection approach to address
the task of protease-specific cleavage target prediction28.

In the first-step feature selection, we estimated the relative import-
ance of each feature using the minimum-redundancy maximum-
relevance (mRMR)29 approach, which ranked each input feature
according to its relevance to the classification variable as well as
redundancy among all features. Features that are ranked highly by
mRMR generally have an appropriate balance between the max-
imum relevance and minimum redundancy. This step is based on
the benchmark dataset. We obtained the top 100 features as the
optimal candidates (OFCs) after this step. As observed from Fig. 2
and Supplementary Fig. S2, functional features had the highest rank-
ing of importance scores. AAindex and PSSM features additionally
had a relatively high importance score. The predicted secondary
structures, such as those predicted by SABLE and SpineX, had rela-
tively lower ranking values. These results indicate that the contribu-
tive features in our method are predominantly sequence-derived and
functional.

The second step was a stepwise feature selection, i.e. incremental
feature selection (IFS) based on the RF classifier. At each round of
stepwise feature selection, the next feature from the mRMR-ranked
feature list was added to the model, and the resulting performance of
the model calculated. To evaluate the performance, 5-fold cross-
validation tests were applied, whereby the benchmark dataset was
randomly divided into five subsets. Each subset in turn was used as a
holdout set. For each holdout set the remaining four subsets were
merged to form the training set for the RF model, while the holdout

Figure 2 | mRMR results of the top 50 features (classified by feature type) for H. sapiens. Each group of features is denoted by different colors. See

Supplementary Table S1 for the full list.
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set was used as the testing set for validation of the model. The cor-
responding feature subset with which the RF classifier achieved the
highest AUC score was considered the final optimal feature subset
and used to build the prediction model. By iteratively adding inform-
ative features from the initial OFCs, the prediction performance of
the model was gradually increased during this procedure (Fig. 3). The
best performance in Fig. 3 is the final AUC for the corresponding

species. And the feature set for that performance was the final
optimal feature set. At the same time the corresponding model was
the final model based on the benchmark datasets. Fig. 3 shows the
whole process of second feature selection.

This two-step feature selection, which combines mRMR feature
ranking and stepwise feature selection, provides a practical approach
for selecting a useful subset of informative features, and has been

Figure 3 | IFS (Incremental Feature Selection) curves of acetylation site prediction for H. sapiens, M. musculus, E. coli, S. typhimurium, S. cerevisiae
and R. norvegicus, respectively.
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adopted by other prediction tasks28,30–32. Finally, we obtained a more
compact informative feature subset that improved the prediction
performance of RF classifiers for each species (A complete list of
the final selected optimal features for each species is provided in
Supplementary Table S1).

Feature importance and contribution. As mentioned previously,
the optimal feature subset was selected with a two-step selection
procedure. After this procedure, ten different feature types were
retained in the respective optimal subsets for each species,
including functional features, AAindex, functional annotation,
physicochemical properties, PSSM, conservation score, Disopred,
Sable and SpineX. The number of selected optimal features
differed, depending on the species of interest. For example, H.
sapiens had the largest subset of optimal features (a total of 58),
while R. norvegicus had the smallest subset with only 8 features
used to build its specific model. In addition, the number of
AAindex features was greater than that of other features for all
species, presumably because the proportion of initial AAindex
features prior to selection is extremely high, relative to other
features (7280 to 7973). In contrast, the numbers of
physicochemical properties, conservation score, Disorder and
Sable features were relatively small. More importantly, functional
features (only 7 in total) were entirely selected for optimal subsets
of H. sapiens and M. musculus, suggesting that protein functional
features play significant roles in determining the prediction
performance of the model. Moreover, both AAindex and PSSM
features were included in the optimal feature subsets for all six
species, indicating that sequence-derived features represent a
critical factor in determining the predictive power of the model.

Sequence-derived features have been extensively used in model
training and reported as crucial for acetylation site prediction in a
number of previous studies. In our investigation, sequence-derived
features, such as the PSSM profile, AAindex and physicochemical
properties, were found to be indispensable for improving the predic-
tion performance of lysine acetylation sites across all six species. To
our knowledge, functional features were applied for the first time to
build accurate models for predicting lysine acetylation sites. They
have contributed significantly to performance improvement of our
model, along with other complementary feature sets (see
‘‘Comparison with other tools’’ section for details).

Prediction performance was evaluated based on the AUC score.
Firstly, we compared the mean values of the selected optimal features
in positive and negative datasets using the statistical unpaired two-
sample t-test to verify whether the two datasets were significantly
different. The given P value was used to estimate statistical signifi-
cance between the two datasets for a specific feature. Results are
illustrated in Supplementary Fig. S3 and Fig. S4. For most selected
optimal subset features, P values were lower than 0.01/n (where n is
the number of tests performed, in this case, the number of features)
according to the Bonferroni adjustment, indicating that the positive
and negative datasets are significantly different from each other. This
finding highlights the discriminative power of these features for
prediction.

We continued to evaluate the importance and individual contri-
bution of each feature type to the prediction performance of the
model. For each species, all features of the feature type were taken
out of the optimal feature set in turn, and the remaining feature types
used to build the corresponding model for predicting acetylation
sites. The prediction performance of the resultant model was eval-
uated using the AUC measure. A feature is considered to contribute
significantly to performance if the AUC score of the model in its
absence decreases considerably, compared with that of the original
model built using all the optimal features, as presented in Fig. 4.
Taking H. sapiens as an example, there are eight types of features
in its model. The AUC score for functional features was the lowest

and this suggests that when removing this type of features from all
eight types of features, the performance would considerably decrease,
implying that functional features make a more important contri-
bution than other features for predicting the acetylation sites of H.
sapiens.

We additionally quantified the contribution of each specific fea-
ture by examining the difference between the AUC score of the
model to that using only the examined feature as input and the
AUC score using all other optimal features but excluding that par-
ticular feature as input. This analysis facilitated determination of the
individual features that had contributed more significantly to the
prediction performance of the model. Our results are presented in
Supplementary Fig. S5. Taking H. sapiens as an example, the 7973rd
feature was functional feature_7 (Protein-protein interaction score)
(See Supplementary Table S1 for a full list of all the final features).
The red bar in Supplementary Fig. S5 denotes the AUC score of the
model that was trained using this particular feature only, which was
over 0.6, whereas the blue bar indicates the AUC of the model that
was trained using all other optimal features but excluding this par-
ticular feature, which was nearly 0.8. Altogether, these results indi-
cate that this feature is relatively important.

Prediction performance of SSPKA based on benchmark datasets.
We evaluated the prediction performance of the SSPKA models
based on the final optimal features, using 5-fold cross-validation
tests based on the benchmark datasets. The results are presented in
Table 1 and Supplementary Table S2. RF models for all six species
displayed relatively good performance with AUC scores ranging
from 0.746 to 0.883. Among these species, the performance of the
model for S. typhimurium was the worst with an AUC of 0.746, while
that for R. norvegicus was optimal with an AUC of 0.883. The models
trained using the selected optimal features for H. sapiens, M.
musculus, E. coli and S. cerevisiae achieved AUC scores of 0.794,
0.788, 0.782 and 0.795, respectively.

A significant feature of this work, distinct from previous lysine
acetylation site prediction studies, is the characterization and incorp-
oration of statistically over-represented functional features by per-
forming hypergeometric tests on the background protein datasets33.
While previous studies mostly focused on the extraction of useful
sequence or sequence-derived features, such as PSSM and AAindex,
our current model took into consideration other important, relevant
functional features that could be used in combination with sequence-
derived features to improve accuracy.

Indeed, several key functional features, including KEGG, GO CC,
BP, MF and PPI, contributed significantly to improvement of lysine
acetylation site prediction. Supplementary Tables S3–S8 provide
complete lists of the significantly enriched functional feature terms
with P , 0.01/n (n is the number of tests performed and in this case,
the number of terms) according to the Bonferroni adjustment) for all
six species. The enrichment or depletion of these functional features
reflects a specific inclination or preference of the functional require-
ments of different acetylated proteins, such as those for cellular
compartments, related pathways, and protein-protein interactions.
Consequently, inclusion and encoding of the informative functional
features helped improve prediction performance.

Here, we further characterized significantly enriched terms at the
functional level. First, over-represented functional features were
identified by hypergeometric tests. Significantly enriched functional
feature terms for each species are shown in Supplementary Tables
S3–S8 (only the top ten terms are listed). Taking H. sapiens as an
example, there were 2233 enriched protein interaction partners in
terms of PPI features. With regard to KEGG pathway features, acety-
lated H. sapiens proteins were enriched in metabolic pathway terms,
such as ‘‘Valine, leucine and isoleucine degradation’’, ‘‘Glycolysis/
Gluconeogenesis’’ and ‘‘Pyruvate metabolism’’. In addition, these
proteins were enriched in certain disease pathway terms, including
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‘‘Viral carcinogenesis’’, ‘‘Systemic lupus erythematosus’’ and
‘‘Pathogenic Escherichia coli infection’’ (Supplementary Table S3).
The results suggest that acetylated H. sapiens proteins are involved in
metabolic processes related to disease pathways. Similar pathway
terms were found in M. musculus (Supplementary Table S4). In
terms of Biological Process (BP) terms, again, acetylated proteins
were associated with transcriptional processes, including ‘‘trans-
lational termination’’, ‘‘translational initiation’’, ‘‘translational
elongation’’, ‘‘viral transcription’’ and ‘‘mRNA splicing, via spliceo-
some’’ (Supplementary Table S3). In terms of Molecular Function
(MF) terms, acetylated proteins were enriched in functions related to
nucleotide binding, such as ‘‘RNA binding’’, ‘‘DNA binding’’, ‘‘chro-
matin binding’’ and ‘‘nucleotide binding’’.

Sequence-derived features are additionally useful for predicting
lysine acetylation sites. As shown in Supplementary Table S1, the
selected optimal features derived from sequences mainly include
AAindex and PSSM features of residues at positions surrounding
potential lysine acetylation sites. Supplementary Table S9 displays
an overall statistical analysis of all the selected optimal features for
each species. We did not elaborate on these features in this section,
since their utility has been established in previous studies. In addi-

tion, the application of powerful feature selection techniques, such as
those used in this study, allowed quantification of the relative
importance and contribution of each feature type to lysine acetyla-
tion site prediction. Our findings collectively provide critical insights
into the key determinants of lysine acetylation sites at both sequence
and functional levels.

Comparison with other existing tools based on independent test
datasets. Both 5-fold cross-validation and independent tests were
conducted to compare the performance of our method with other
previously published methods, including Phosida23, BRABSB24,
PLMLA17, LysAcet20, ensemblePail18 and PSKAcePred16. Phosida23

and PSKAcePred16 used the binary encoding features of amino
acids as input features of the model. BRABSB24 was a SVM-based
human-specific lysine acetylation predictor that was developed using
a novel bi-relative adapted binomial score Bayes (BRABSB) feature
extraction method. PLMLA17, LysAcet20 and ensemblePail18 utilized
position-weighted matrix or position-weighted amino acid
properties, similar to the PSSM profile, as part of the input features
to build the models. Moreover, PLMLA17 employed the secondary
structure predicted by PSIPRED, while PSKAcePred16 combined

Figure 4 | Prediction performance of the models removing a specific feature type for prediction of lysine acetylation sites for all six species.
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solvent accessible surface area and KNN scores to train the model.
Our SSPKA method incorporated not only the sequence-derived
features previously shown to be useful for prediction but also the
over-represented protein functional features, which made a
significant contribution to the prediction power of the model.
Another major difference between our method and other
techniques lies in the fact that all earlier tools built the prediction
model using SVM, whereas our method used RF based on decision
trees to train and build the model.

We initially compared the performance of our method with other
methods using the benchmark datasets based on 5-fold cross-valid-
ation tests. ROC curves of all methods are shown in Fig. 5, which
describe the true positive rate as a function of false positive rate for
different trade-offs between the sensitivity and specificity. Our
method clearly outperformed the other five techniques for all six
species. AUC scores of 0.794, 0.788, 0.746, 0.782, 0.795 and 0.883
were achieved for H. sapiens, M. musculus, S. typhimurium, E. coli, S.
cerevisiae and R. norvegicus, respectively. These results indicate that
our model provides a better predictive power than existing tools on
benchmark datasets.

We further performed two independent tests by considering two
different situations of negative sample selection to further compare
the performance of our method (the first situation is to randomly
select negative samples from proteins that contain positive samples
and proteins in the background, and the second is to select negative
samples only from proteins that contain positive samples, excluding
the background dataset). The corresponding ROC curves for these
two situations are displayed in Supplementary Fig. S6 and S7,
respectively.

In the first situation, our methods still outperformed the majority
of other methods for all the species examined. One exception was the
case of R. norvegicus for which SSPKA achieved an AUC of 0.696,
which was slightly lower than that of LysAcet (AUC 5 0.729), indi-
cating slightly weaker performance of our method. The second situ-
ation represents a more difficult scenario for lysine acetylation site
prediction, since both positive and negative samples were obtained
from the same proteins, thus representing a subtler situation and
confounding the prediction of positives and negatives. In the second
situation, our method still outperformed others for three species, M.

musculus, S. typhimurium and E. coli. However, our method per-
formed worse than PLMLA for S. cerevisiae, LysAcet for R. norvegi-
cus, and PLMLA and BRABSB for H. sapiens, respectively. The main
reason is that the contribution of functional features in this situation
became marginal, due to the selection of samples only from proteins
containing both negative and positive sites, reducing the predictive
power of models relying on global functional features. The perform-
ance comparison results of our method with other existing methods
based on different datasets are shown in Table 1 and Supplementary
Table S2. To examine the statistical significance, we further per-
formed pairwise t-test using the prediction outputs from different
methods. The results showed that the performance differences
between our method SSPKA and other methods were, in most cases,
statistically significant (Supplementary Table S10). Finally, we would
like to emphasize that the testing results on the independent tests
were more reliable and hence should be given higher weights when
evaluating the performance of different methods.

Cross-species performance evaluation. To examine whether each of
the species-specific models could perform better for its original
species than other species, we performed cross-species
performance evaluation for each of the models by testing and
comparing its performance on all other species. Here, the model’s
performance was tested by independent test datasets. As shown in
Supplementary Fig. S8, the original model consistently performed
the best when being applied to predict acetylation sites for the
original species than other species. For example, the human-
specific model achieved an AUC score of 0.756. In contrast, it
achieved lower AUC scores of 0.606–0.698 for predicting
acetylation sites of the other five species. This is also the case for
other species-specific models, which consistently achieved the higher
AUC scores when being applied to their own species than other
species. In summary, these results justify the necessity and
importance of developing species-specific models to improve the
prediction of lysine acetylation sites.

Influence of the selection of negative datasets on the performance.
As the selection of negative data might influence the final prediction
performance of the model, we examine this aspect by re-training the

Table 1 | Performance comparison of our work with other existing tools for H. sapiens. The performance was evaluated using six measures
such as MCC, ACC, SEN, SPE, PRE and AUC, based on the three tests: benchmark (our method is based on 5-fold cross-validation),
independent test and independent test datasets with negatives selected on the same proteins

Datasets Tools MCC ACC SEN SPE PRE AUC

Benchmark PLMLA 0.274 0.667 0.560 0.721 0.503 0.691
test Phosida 0.191 0.618 0.542 0.657 0.444 0.631

LysAcet 0.131 0.579 0.540 0.598 0.405 0.591
ensemblePail 0.107 0.565 0.529 0.583 0.391 0.564
PSKAcePred 0.187 0.602 0.589 0.608 0.432 0.622
BRABSB 0.345 0.694 0.630 0.726 0.538 0.675
Our Work 0.409 0.709 0.736 0.695 0.549 0.794

Independent PLMLA 0.312 0.672 0.633 0.692 0.515 0.701
test Phosida 0.141 0.599 0.491 0.655 0.424 0.599

LysAcet 0.089 0.558 0.512 0.582 0.388 0.552
ensemblePail 0.065 0.558 0.457 0.610 0.378 0.537
PSKAcePred 0.169 0.591 0.583 0.595 0.427 0.602
BRABSB 0.278 0.655 0.612 0.678 0.496 0.653
Our Work 0.325 0.664 0.694 0.648 0.505 0.756

Independent PLMLA 0.296 0.648 0.633 0.663 0.667 0.689
test Phosida 0.136 0.568 0.553 0.583 0.585 0.597
with LysAcet 0.120 0.558 0.503 0.616 0.583 0.552
negative set ensemblePail 0.076 0.535 0.457 0.618 0.560 0.534
selected PSKAcePred 0.111 0.556 0.553 0.558 0.571 0.556
on the same BRABSB 0.275 0.637 0.612 0.663 0.659 0.645
Protein Our Work 0.214 0.600 0.482 0.725 0.652 0.606
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models with randomly selected negative data and testing the resulting
model’s performance on the independent test dataset. This procedure
was repeated five times and we generated the corresponding ROC
curves in Supplementary Fig. S9. As can be seen, the red curve

corresponds to the original model, which achieved an AUC value
of 0.756, while all the other five blue curves correspond to the re-
trained models with randomly generated negative data, with close
AUC values ranging from 0.759 to 0.765. Therefore, these results

Figure 5 | Performance comparison between our method and other tools on 5-fold cross-validation test datasets.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5765 | DOI: 10.1038/srep05765 8



show that the selection of negative datasets has little or minor
influence on the performance of the model.

Proteome-wide prediction and implementation of online web
server and local Java applet of SSPKA. We have implemented an
online web server and local Java tool of SSPKA to facilitate high-
throughput in silico prediction of lysine acetylation sites, which can
be freely accessed at http://www.structbioinfor.org/Lab/SSPKA/.
After demonstrating SSPKA’s ability to predict lysine acetylation
sites using both benchmark and independent datasets, we applied
our model to screen the entire human proteome (a total of 84,919
proteins), with the aim of identifying high-confidence novel lysine
acetylation sites that have been overlooked with other experimental
techniques. To generate high-confidence prediction results, SSPKA
models were trained using the final optimal features based on the
whole training dataset. Proteins containing predicted lysine
acetylation sites (adopting a prediction threshold of 0.517, which
corresponds to the upper-left-most point in the ROC curve for
human) were classified as high-confidence acetylated substrates.
Consequently, our high-throughput in silico analysis identified
17,464 acetylated substrates with 66,255 predicted lysine
acetylation sites. A complete list of the predicted acetylation
substrates with detailed annotations of substrate protein IDs,
acetylated lysine positions and amino acid sequences is available
on the SSPKA website (http://www.structbioinfor.org/Lab/SSPKA/).
The proteome-wide predictions represent a valuable resource for
experimental validation of novel human acetylation substrates and
generation of useful hypotheses.

The implemented online web server, local Java Applet and user
instructions are also available at the website. In particular, an import-
ant advantage of the Java applet is that it provides a user-friendly
interface and allows high-throughput in silico screening analysis of
putative acetylation substrates (see Supplementary Fig. S10 for a
screenshot of the interface and an example output of the implemen-
ted Java tool).

Analysis of proteome-wide prediction results in the sense of
mimicking the distribution of acetylation sites. We further
analyzed the proteome-wide prediction results to examine whether
there was a correlation in the number of predicted acetylation sites to
protein sequence length and whether there was a correlation in the
number of predicted acetylation sites to the number of lysines in the
protein sequence. We thus plotted these two distributions in
Supplementary Fig. S11. We can see that the two distributions
were not similar to each other, with varying correlation coefficients
of less than 0.5, indicating no significant correlations between the
two types of distributions.

Discussion
The performance of some competing methods (PSKAcePred and
Phosida) seemed to be lower than their original published results.
Here, we provide our explanations. Firstly, many machine learning
algorithms work better on balanced datasets than on imbalanced
datasets. In this study, the number of negative samples (i.e. non-
acetylation sites) is much larger than that of positive samples (i.e.
acetylation sites). A widely adopted strategy in model training is to
select a balanced number of positives versus negatives with a ratio of
151, 152 and 153. This strategy has been used by many tools in
protein post-translational modification (PTM) site prediction,
including acetylation site prediction (ref. 18, 19, 20, 22); Secondly,
use of different benchmarking datasets might lead to the lower per-
formance of these methods. We selected the positive datasets with
high credibility (according to PubmedMS2 or CstMS2 values from
PhosphoSitePlus datasets). Proteins that were previously considered
as non-acetylated might be acetylated under certain conditions.
Thus, the benchmark datasets have to be updated in a timely manner

to reflect the current annotation status of acetylated proteins;
Thirdly, the negative datasets were selected not only from lysine
residues excluding known lysine acetylation sites on the same pro-
tein, but also from other lysine residues on non-acetylated proteins
(proteins not shown to be acetylated to date), while other methods
only selected negative sites on the same proteins. In the latter case, it
would be difficult to collect a group of proteins that can be strictly
regarded as non-acetylated proteins. In such case, methods that did
not consider the background proteins relative to acetylated proteins
would not perform well on the benchmark datasets that not only
included acetylated proteins but also incorporated vast numbers of
background proteins; Lastly, some tools (e.g. BRABSB) only pro-
vided a valid model for H. sapiens. As it was trained using acetylation
data only from H. sapiens, it might not work well when applied to
predict the acetylation sites for other species.

In this study, we have developed a novel integrative approach,
termed SSPKA, that has significantly improved the prediction per-
formance of species-specific lysine acetylation sites across six differ-
ent species, i.e., H. sapiens, M. musculus, S. typhimurium, E. coli, S.
cerevisiae and R. norvegicus, by combining a variety of sequence-
derived and functional features from multiple sources. SSPKA
employs an efficient two-step feature selection framework to char-
acterize the sequence and function-level features that are significant
and relevant for the determination of true acetylation sites.
Benchmarking experiments indicate that SSPKA is able to perform
competitively, compared with existing tools. Moreover, a user-
friendly webserver and local java program that suit the purposes of
various biological users for the high-throughput in silico prediction
of lysine acetylation substrates and sites have been made freely avail-
able. We anticipate that SSPKA will be used as a powerful tool for
hypothesis-driven experimental studies on novel acetylation sub-
strates and their biological functions.

Methods
Datasets. Annotations of lysine acetylation sites were extracted from multiple public
resources. These include CPLA34 (http://cpla.biocuckoo.org/), N-ACE19 (http://N-Ace.
mbc.NCTU.edu.tw/), Phosida35 (http://www.phosida.com/), ASEB15 (http://cmbi.
bjmu.edu.cn/huac) and PhosphoSitePlus36 (http://www.phosphosite.org). Amongst
these, CPLA is a lysine acetylation database that integrates abundant protein
annotations, while PhosphoSitePlus and Phosida are comprehensive databases for
post-translational modifications, including lysine acetylation data. N-ACE and ASEB
are two lysine acetylation prediction tools that provide training datasets for their
model15,19. To extract annotations from UniProtKB/Swiss-Prot37, all protein data were
mapped to the UniProt database to retrieve the corresponding Uniprot IDs. After
removing all identical sequences among the seven initial databases, we finally collected
27,075 experimentally verified acetylation sites from 10,713 protein sequences. Large
amounts of protein acetylation data resulted from the rapid development of high-
throughput proteomic technologies. However, in many cases, the probability scores of
MS2 (mass spectrum) were substantially low, indicating a low likelihood of true
acetylation sites. Accordingly, we removed acetylation sites from our datasets with
PubmedMS2 or CstMS2 values smaller than 10 in PhosphoSitePlus. Acetylation sites
were grouped according to the corresponding species. As homologous sequences lead
to overestimation of the prediction accuracy of built models, we clustered protein
sequences at the 30% identity level using CD-HIT38 software. Finally, species
containing more than 40 acetylation sites were included in our positive datasets,
predominantly because datasets of fewer samples are not sufficiently large to generate
a valid machine learning model.

Table 2 shows the statistics of the final species-specific datasets curated. In total,
our final datasets contained 1,936 proteins with 3,956 acetylation sites from six
species, including both prokaryotes and eukaryotes. The datasets can be downloaded
at the website http://www.structbioinfor.org/Lab/SSPKA. Negative samples were
randomly selected, not only from lysine residues (excluding known lysine acetylation
sites on the same protein) but also other lysines of non-acetylated proteins (proteins
that were not shown to be acetylated to date), with a ratio of 152 of positive versus
negative sites (i.e., random sampling of one positive sample accompanied with one
negative sample on the same protein, as well as one negative sample from non-
acetylated protein). In addition, 20% of each final dataset was randomly singled out as
an independent test dataset to evaluate and compare performance between our
method and other previously published protocols, while the rest was used as the
training dataset to optimize the parameters, train the models and assess performance
in 5-fold cross-validation tests.

Feature extraction. The extracted features were classified into four major categories:
sequence-derived features, predicted secondary structures, functional annotations
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and functional features. In keeping with earlier studies17,19,20,22, a local sliding window
approach with 13 residues centered on the lysine of interest was employed to extract
the sequence-derived features of each candidate residue. In total, 7,973 features from
different feature types were extracted (Table 3).

Sequence-derived features. Position-specific scoring matrix. Multiple sequence
alignment containing the evolutionary information of a sequence in the form of
position-specific scoring matrix (PSSM) has been shown to significantly improve
prediction performance. Each element in PSSM indicates the probability of the
individual residue at that specific position in the multiple sequence alignment31,39. The
PSSM profile of each sequence was generated from PSI-BLAST40, and a local sliding
window approach adopted to encode the matrix of a given sequence fragment
surrounding potential acetylation sites. The parameters for running PSI-BLAST were
set as the default E-value cutoff, and three iterations used to search against the non-
redundant NCBI NR database.

AAindex. We employed the AAindex41 database to extract various biochemical and
physicochemical properties of amino acids, which are major features. Three sections
are included in the AAindex, specifically, AAindex1 for the 20 numerical amino acid
values, AAindex2 for the amino acid mutation matrix, and AAindex3 for statistical
protein contact potential.

Evolutionary conservation score. Evolutionary conservation is commonly employed
as an important feature for prediction. A more conserved residue within a protein is
indicative of higher importance for protein function. Evolutionary conservation
features are extracted from the PSSM profile generated by PSI-BLAST. A lower
conservation score means higher conservation at a specific position.

The conservation score is defined as:

Scorei~{
X20

j~1

pi,j log2pi,j ð1Þ

where pi,j is the frequency of amino acid type j at position i.

Predicted secondary structure. Protein secondary structure is a useful feature to
predict lysine acetylation sites. However, due to the limited number of protein
substrates with available structural information, we predicted the secondary structure
from amino acid sequences using SABLE42. For each residue of the query sequence,
SABLE outputs three secondary structure types, H, E and C, denoting alpha-helix,
beta-strand and coil, respectively. We encoded the predicted secondary structure in
our model using 3-bit binary encoding43.

Predicted solvent accessibility. Solvent accessibility is another important feature for
acetylation site prediction. SpineX44 was employed to predict the solvent accessibility
information for each protein, which provided a quantitative score representing the
extent of relative solvent accessibility of a residue from fully buried to fully exposed.

Disordered region. A protein disordered region lacks a well-defined tertiary
structure, and is either fully or partially unfolded. Earlier researchers suggested that
disordered regions were ‘useless’. However, over recent years, disordered regions have
been shown to be involved in several important biological functions45. For instance,
many phosphorylation sites are located in disordered, rather than non-disordered
regions46,47. As such, disorder information contributes to phosphorylation site
prediction48. Here, we extracted predicted disorder information calculated using
DISOPRED2, which was also added as the input to our models49.

Functional annotation. Functional annotation of a protein in UniProt can be found
in the ‘‘FT’’ line of the annotation37. Several different types of functional annotations
were used as features, including DOMAIN, NP_BIND, DISULFID, MOD_RES,
CARBOHYD, ACT_SITE, VARIANT, METAL, and BINDING, which represent
domain, nucleotide binding, disulfide bond, post-translational modified residue
(acetylation removed), glycosylation, active site, natural variant, metal ion binding
site and binding site, respectively. Within the sliding window, the amino acid is
encoded as ‘‘1’’ if that site has the annotation of a specific function. On the other hand,
an amino acid without the functional annotation is encoded as ‘‘0’’. In total, there are
13 (window size) 3 9 (annotation types) 5 117-dimensional encoded features for this
type.

Functional features. Inclusion of functional features of a whole protein and
assessment of their contribution to performance is a crucial aspect of this work. To
address this, we included protein functional features from the Gene Ontology
database50 and other biological databases, including Biological Process features (BP),
Cellular Component features (CC), Molecular Function features (MF), functional
domain features from InterPro51, pathway features from KEGG52, functional domain
features from Pfam53 and protein-protein interactions from PPI54.

Random forest classifier. We employed a machine learning approach- random
forest to generate models for lysine acetylation site prediction. RF is an ensemble
learning method based on the classification tree55, which ‘‘votes’’ for one of the two
classes, either positive (acetylation sites) or negative (non-acetylation sites). The
experimentally verified acetylation sites in the datasets were labeled ‘1’ and all other
lysine residues labeled ‘21’. As described above, the physicochemical properties of a
lysine residue of interest were represented by a series of input feature vectors and
encoded into RF classifiers to identify whether or not the residue was an acetylation
site. RF is considered as one of the most accurate machine learning algorithms

Table 2 | Statistics of species-specific lysine acetylation datasets
curated in this study, covering six species H. sapiens, M. musculus,
E. coli, S. typhimurium, S. cerevisiae and R. norvegicus

Species Acetylated proteins Acetylation sites

H. sapiens 1121 2368
M. musculus 426 935
E. coli 143 246
S. typhimurium 182 250
S. cerevisiae 44 86
R. norvegicus 20 71
Total 1936 3956

Table 3 | A summary of feature type, annotation and dimensionality. Features can be classified into four major categories: sequence-
derived features, predicted secondary structure, functional annotation and functional features

Feature type Annotation Dimensionality

Sequence PSSM (PSI-BLAST) 260
AAindex 7280
Physicochemical properties of the whole protein 10
Evolutionary conservation score 13

Predicted secondary structure SABLE score 39
DISOPRED score 26
SpineX score 221

Functional Annotation Domain 13
Nucleotide binding 13
Disulfide bond 13
Posttranslational modified residue (acetylation is removed) 13
Glycosylation 13
Active site 13
Natural variant 13
Metal ion binding site 13
Binding site 13

Functional Features Gene ontology 3
KEGG pathway 1
Pfam 1
InterPro 1
Protein-protein interaction 1
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available that produce highly accurate classification results. In addition, it can be used
to select more important variables and efficiently handle large datasets56. Owing to
these advantages, RF has been frequently used to address classification problems in
bioinformatics, such as prediction of DNA-binding sites, RNA-binding sites, residue-
residue contacts, functional sites, disease-causing non-synonymous SNPs and metal-
binding sites30,31,57–60.

Performance evaluation. We used six measures, Matthews Correlation Coefficient
(MCC), Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Precision (PRE) and
Area Under the Receiver-Operating Characteristic Curve (AUC), to evaluate
performance. For the six species-specific datasets, an under-sampling strategy with a
152 ratio between positive and negative samples was adopted. It is not reasonable to
assess performance using Accuracy (i.e., the proportion of true positives and true
negatives on the dataset) based on an imbalanced dataset. AUC is the area under the
receiver-operating characteristic (ROC) curve, presented as a plot of true positive rate
(TPR i.e. SEN) against false positive rate (FPR). The AUC value of a ROC curve
summarizes the overall performance of a corresponding model or method. An AUC
value of 1.0 indicates perfect prediction, while 0.5 signifies complete random
prediction. We consider AUC a more appropriate measure for comprehensively
evaluating the overall quality of the RF-based classifier performance.
MCC is defined as:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð2Þ

ACC is defined as:

ACC~
TPzTN

TPzTNzFPzFN
ð3Þ

SEN is defined as:

SEN~TPR~TP=(TPzFN) ð4Þ

SPE is defined as:

SPE~TN=(TNzFP) ð5Þ

PRE is defined as:

PRE~TP=(TPzFP) ð6Þ

FPR is defined as:

FPR~FP=(TNzFP) ð7Þ

where TP, TN, FP and FN represent the numbers of true positives, true negatives, false
positives and false negatives, respectively.
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