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Abstract
Protein ubiquitination is one of the most important reversible post-translational modifications (PTMs). In many
biochemical, pathological and pharmaceutical studies on understanding the function of proteins in biological
processes, identification of ubiquitination sites is an important first step. However, experimental approaches for
identifying ubiquitination sites are often expensive, labor-intensive and time-consuming, partly due to the dynamics
and reversibility of ubiquitination. In silico prediction of ubiquitination sites is potentially a useful strategy for whole
proteome annotation. A number of bioinformatics approaches and tools have recently been developed for predict-
ing protein ubiquitination sites. However, these tools have different methodologies, prediction algorithms, function-
ality and features, which complicate their utility and application. The purpose of this review is to aid users in
selecting appropriate tools for specific analyses and circumstances.We first compared five popular webservers and
standalone software options, assessing their performance on four up-to-date ubiquitination benchmark datasets
from Saccharomyces cerevisiae, Homo sapiens, Mus musculus and Arabidopsis thaliana. We then discussed and
summarized these tools to guide users in choosing among the tools efficiently and rapidly. Finally, we assessed the
importance of features of existing tools for ubiquitination site prediction, ranking them by performance. We also
discussed the features that make noticeable contributions to species-specific ubiquitination site prediction.

Keywords: protein ubiqutination; bioinformatics; tool development; species-specific ubiquitination sites; sequence analysis;
feature selection

INTRODUCTION
Protein ubiquitination is one of the most important

reversible post-translational modifications (PTMs)

[1]. Conjugation of ubiquitin (Ub) to lysine residues

of a target protein is regulated by the sequential ac-

tivity of Ub-activating (E1), Ub-conjugating (E2)

and Ub-ligating (E3) enzymes. Ubiquitination

varies in the number of added Ubs, either single
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Ub or poly-Ub chains [2–4]. Ubiquitination is

involved in regulating a variety of fundamental cel-

lular processes [5, 6], including protein degradation,

gene transcription, DNA repair and replication,

intracellular trafficking and virus particle budding

[7]. Accumulating experimental evidence suggests

that changes in the ubiquitination system are closely

related to cellular transformation, immune response

and inflammatory responses [8].

The Ub-proteasome system targets 80% of the pro-

teins of a eukaryotic cell for degradation [9].

However, the complete repertoire of ubiquitylated

substrates and their corresponding ubiquitination

sites remains to be fully characterized. Current

experimental methods for identifying

ubiquitination sites include site-directed mutagenesis

[10] and mass spectrometry [11, 12]. With efficient

purification methods such as affinity-tagged Ub, Ub

antibodies or Ub-binding proteins, mass spectrometry

is particularly suitable for high-throughput

identification of ubiquitination sites [11, 12].

However, protein ubiquitination is a rapid and

reversible PTM, so large-scale identification of ubi-

quitylated proteins and their ubiquitination sites is

often expensive, labor-intensive and time consuming.

In parallel with experimental identification of ubi-

quitination sites, computational prediction of potential

ubiquitination sites has become a useful strategy for

complete proteome annotation, prioritization of can-

didate ubiquitination substrates and hypothesis-driven

experimental design. Almost all proposed computa-

tional methods formulate ubiquitination site prediction

as a binary classification problem, classifying each can-

didate lysine as either a ubiquitination or a non-ubi-

quitination site. These methods can predict new

ubiquitination sites by learning the features of the se-

quence context of experimentally verified ubiquitina-

tion sites via classification algorithms. The input for a

ubiquitination site predictor is generally a sequence

fragment with a central lysine (K) of interest followed

by n flanking residues on each side (i.e., the window

size for the sequence fragment is 2n+1). An appropriate

scheme to encode the sequence fragment is required

for the prediction algorithm. Finally, a predictor is con-

structed or trained using statistical or machine-learning

algorithms to predict potential ubiquitination sites in

other proteins or the entire proteome.

A number of computational methods have recently

been developed. Tung and Ho (2008) developed the first

tool for ubiquitination site prediction, named UbiPred

[13], which used a Support Vector Machine (SVM) with

31 informative physicochemical features selected from

published amino acid indices [14]. Radivojac et al. pro-

posed a Random Forest-based predictor called UbPred,

which uses 586 sequence attributes as the input feature

vector [15]. Lee etal. (2011) designed UbSite [16], using

an efficient radial basis function (RBF) kernel for iden-

tifying ubiquitination sites. We recently developed

CKSAAP_UbSite [17], which is a SVM-based predictor

that considers composition of k-spaced amino acid pairs

surrounding potential ubiquitination sites. In 2012, Cai

et al. proposed a ubiquitination site predictor based on a

nearest-neighbor algorithm [18]. They performed incre-

mental feature selection and characterized key

components from an initial set of 541 features to improve

prediction performance. More recently, Chen et al.
(2013) presented a new tool termed UbiProber [19],

which was specifically designed for large-scale predictions

of both general and species-specific ubiquitination sites.

Almost at the same time, our group developed the

hCKSAAP_UbSite tool [20] by integrating the outputs

of four different types of predictors. More information

about these methods is in Table 1. These methods differ

in the training and test datasets used, the ratio of positive

versus negative samples, the sliding window size and

algorithms chosen, the types of sequence or structural

descriptors employed, and whether the prediction

models are general or species-specific. Other notable dif-

ferences among these methods include implementation

as webservers or standalone software, support of batch

predictions, ability to adjust prediction stringency thresh-

olds and computational efficiency.

Despite the availability of various ubiquitination

site prediction tools, an important issue is compre-

hensively evaluating the performance and comparing

the strengths and weaknesses of the tools. A compre-

hensive performance evaluation of these methods

will enable a better understanding of the pros and

cons of the methods and assist users in choosing pre-

diction tools for their particular circumstances. In

addition, from a practical biological perspective, a

systematic comparative analysis of the most import-

ant determining features of lysine ubiquitination

considered by the tools will further our understand-

ing of the underlying mechanisms of ubiquitination

conjugation to target proteins. This timely compari-

son will facilitate bioinformaticians in identifying

research directions and problems that require

urgent attention, which will inform future develop-

ment of better tools.

In this review, we analyzed and compared five

popular webservers or standalone tools using four

Towards more accurate prediction of ubiquitination sites 641
 at C

hina A
gricultural U

niversity on July 31, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

,
http://bib.oxfordjournals.org/


Ta
bl
e
1:

Su
m
m
ar
y
of

ub
iq
ui
tin

at
io
n
si
te

pr
ed
ic
tio

n
to
ol
s
co
m
pa
re
d
in

th
is
st
ud

y

To
ol

Sp
ec
ie
s

W
eb

se
rv

er
A
lg
or
it
hm

O
pt
io
n
of

ba
tc
h

pr
ed

ic
ti
on

A
dj
us
tm

en
t

of
pr

ed
ic
ti
on

th
re
sh
ol
ds

St
an

d
-a
lo
n
e

so
ft
w
ar
e
&

P
la
tf
or

m

Te
ch

ni
ca
l

fr
am

ew
or

k
of

th
e

so
ft
w
ar
e

D
at
as
et

si
ze

(U
bi
qu

it
in
at
-

io
n
si
te
s/

pr
ot
ei
ns
)

R
at
io

of
po

si
ti
ve

to
ne

ga
-

ti
ve

sa
m
pl
es

W
in
do

w
si
ze

T
im

e
fo
r

pr
o
ce

ss
in
g
a

se
qu

en
ce

U
bi
Pr
ed

M
ul
ti
-s
pe

ci
es

ht
tp
://
ic
la
b.
lif
e.

nc
tu
.e
du

.
tw

/u
bi
pr
ed
/

SV
M

Ye
s
(M

ax
im

um
10
0
pr
ot
ei
n

se
qu

en
ce

w
it
h

FA
ST
A
fo
rm

at
at

on
ce
)

N
o

^
^

15
7/
10
5

1:1
21

W
it
hi
n
a

se
co
nd

U
bP

re
d

Sa
cc
ha
ro
m
yc
es

ce
re
vi
sia
e

ht
tp
://
w
w
w
.

ub
pr
ed
.o
rg
/

R
an
do

m
Fo

re
st

N
o

H
ig
h/
M
ed
ia
n/

Lo
w

W
in
do

w
s/

Li
nu
x

Sh
el
l

sc
ri
pt
(d
ep
en
d

on
M
A
TL

A
B

C
om

pi
le
r)

26
5/
20
1

1:1
25

10
se
co
nd

s

C
K
SA

A
P_

U
bS
it
e

Sa
cc
ha
ro
m
yc
es

ce
re
vi
sia
e

ht
tp
://
pr
ot
ei
n.
ca
u.

ed
u.

cn
/c
ks
aa
p_
ub

si
te
/

SV
M

N
o

H
ig
h/
Lo

w
Li
nu
x

PE
R
L
(D

ep
en
d

on
SV

M
-L
ig
ht
)

26
3/
20
3

1:1
27

O
ne

m
in
ut
e

U
bS
it
e

M
ul
ti
-s
pe

ci
es

N
o
se
rv
er

SV
M

^
^

^
^

38
5/
30
1

1:1
41

^
m
R
M
R
_

U
b
Si
te

M
ul
ti
-s
pe

ci
es

N
o
se
rv
er

N
ea
re
st

N
ei
gh
bo

r
al
go
ri
th
m

^
^

^
^

37
8/
27
3

1:
3

21
^

U
bi
Pr
ob

er
M
ul
ti
-s
pe

ci
es

an
d
sin

gl
e

sp
ec
ie
s

ht
tp
://
bi
oi
nf
o.
nc
u.

ed
u.
cn
/u
bi
pr
ob

er
.

as
px

SV
M

Ye
s
(M

ax
im

um
da
ta

si
ze
)

C
on

tin
uo

us
ad
ju
st
m
en
t

W
in
do

w
s

C
#

(.N
ET

4.
0

fr
am

ew
or
k)

22
19
2/
87
50

1:1
27

W
it
hi
n
10

se
co
nd

s

C
K
SA

A
P_

U
bS
it
e

H
om

o
sa
pi
en
s

ht
tp
://
pr
ot
ei
n.
ca
u.

ed
u.

cn
/c
ks
aa
p_
ub

si
te
/

SV
M

N
o

H
ig
h/
Lo

w
Li
nu
x

C
+
+

61
18
/2
50

0
1:1

27
Tw

o
m
in
ut
es

642 Chen et al.
 at C

hina A
gricultural U

niversity on July 31, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://iclab.life.nctu.edu.tw/ubipred/
http://iclab.life.nctu.edu.tw/ubipred/
http://iclab.life.nctu.edu.tw/ubipred/
http://www.ubpred.org/
http://www.ubpred.org/
http://protein.cau.edu.cn/cksaap_ubsite/
http://protein.cau.edu.cn/cksaap_ubsite/
http://protein.cau.edu.cn/cksaap_ubsite/
http://bioinfo.ncu.edu.cn/ubiprober.aspx
http://bioinfo.ncu.edu.cn/ubiprober.aspx
http://bioinfo.ncu.edu.cn/ubiprober.aspx
http://protein.cau.edu.cn/cksaap_ubsite/
http://protein.cau.edu.cn/cksaap_ubsite/
http://protein.cau.edu.cn/cksaap_ubsite/
http://bib.oxfordjournals.org/


current benchmark datasets for four species:

Saccharomyces cerevisiae, Homo sapiens, Mus musculus
and Arabidopsis thaliana. Our purpose was providing

practical and informative insights about accurate pro-

tein ubiquitination site prediction. In particular, we

aimed to determine: (i) whether a universal best pre-

dictor exists that can be used to predict ubiquitination

sites across different species; (ii) if not, which predictor

provides the best species-specific performance; (iii)

whether the predictive power of existing tools can

be improved; and (iv) the most important features

that contribute to prediction of ubiquitination sites.

To address these issues, we performed a comparative

analysis by collecting four large-scale benchmark

datasets from recent experimental studies and extract-

ing features shown to be useful for prediction in pre-

vious studies. We systematically assessed the

performance of three different machine-learning/

statistical methods: Naı̈ve Bayes, Random Forest

and SVM with four window sizes (21, 25, 27 and

41). We assessed the statistical significance and pre-

dictive power of individual and combined features

and discussed their relative importance and contribu-

tion to the identification of ubiquitination sites.

MATERIALSANDMETHODS
Benchmark datasets for assessingmethod
performance
Experimentally verified ubiquitination site datasets for

S. cerevisiae, H. sapiens, M.musculus and A. thaliana were

collected from five large-scale proteomics studies [21–

25] and named S.dataset (S. cerevisiae), H.dataset (H.
sapiens), M.dataset (M.musculus) and A.dataset (A.thaliana).
Because H.dataset was from two large-scale proteomic

studies, we considered only proteins overlapping in the

two studies. We removed sequence redundancy in the

datasets using the Blastclust program (ftp://ftp.ncbi.nih.

gov/blast/documents/blastclust.html) with a 40% iden-

tity cutoff. Experimentally identified ubiquitylated

lysine residues were regarded as positive samples. An

equal number of negative samples were randomly se-

lected from the remaining lysine residues. We note that

it would be difficult to identify absolute negatives that

could not be ubiquitylated under any conditions. In

addition, the remaining residues could contain ubiqui-

tination sites that have not yet been experimentally ver-

ified. However, the amount of ubiquitination sites is

very small compared with the number of non-ubiqui-

tination sites, which should dominate the negative sam-

ples. Hence, we presumed the chance of including true

positives in the negative samples was relatively small.

The numbers of ubiquitylated proteins and ubiquitina-

tion sites for each dataset are in Table 2.

Dataset partition for assessing the
importance and contribution of
individual features
To assess the predictive power and relative import-

ance of individual features, each of the four datasets

(i.e. S.dataset, H.dataset, M.dataset and A.dataset in

Table 2) was divided into training and independent

testing datasets. That is, some proteins (�30–40% of

the total dataset, dependent on the computational

burden of model training) were randomly separated

as the independent testing dataset. Using the above

procedure, we ensured that the positive and negative

samples in each dataset were from the same set of

proteins, with the same ratio of 1:1 between the

positive to negative samples in the training and in-

dependent testing datasets. Supplementary Table S1

summarizes the training and independent datasets

used for each species. Considering that H.dataset
had more ubiquitination sites, we further reduced

the data size to save the computational time required

in model construction. Thus, a subset of proteins was

randomly selected from H.dataset to keep the number

of ubiquitination sites comparable to M.dataset.

Prediction methods under assessment
Our main criterion for including a method in the

comparison analysis is that such method has been

implemented as either a web-server or a stand-

alone software. Five methods were analyzed:

UbiPred [13], UbPred [15], CKSAAP_UbSite [17],

hCKSAAP_UbSite [20] and UbiProber [19].

Amongst these five methods, UbPred (specific for

S. cerevisiae), CKSAAP_UbSite (specific for S. cerevi-
siae) and hCKSAAP_UbSite (specific for H. sapiens)
are species-specific predictors, while UbiPred can be

Table 2: Statistics of the four benchmark datasets
used for assessing the performance of different
methods

Dataset Number of
ubiquitylated
proteins

Number of
ubiquitination
sites

S.dataset 418 820
A.dataset 167 204
M.dataset 4040 13973
H.dataset 3657 32756
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used to predict ubiquitination sites for multiple spe-

cies. UbiProber predictions can be either general

(UbiProber_Combined) or species-specific (e.g.

UbiProber_H.sapiens, UbiProber_M.musculus or

UbiProber_S.cerevisiae). More information about

these methods is in Table 1.

Performance assessment of
individual features
To examine the importance and contribution of individ-

ual features, we extracted features used for ubiquitination

site prediction in previous studies and grouped them into

10 feature types. These features are summarized in

Table 3. It is worth mentioning that AAC encoding

was constructed using the local windows of length

win2(3, 7, 11, 21, 27, 31, 41). Fifteen different k values

(i.e., k¼ 3, 5, 7, 9, 11, 15, 21, 31, 41, 51, 61, 71, 81, 91,

101) were adopted in the KNN encoding. We used

FoldAmyloid [30] and VSL2 [31, 32] to predict the ag-

gregation propensity and disorder scores for each residue

in a protein. For each residue, the aggregation propensity

score in the sequence window was encoded as an indi-

vidual feature, while the disorder score was averaged

within win2(3, 7, 11, 21, 27, 31, 41). The PSSM profile

was obtained by running PSI-BLAST against the NCBI

nr database with parameters -h of 0.0001 and ĵ of 3. The

42 outputs (20-dimensional PSSM vector, 20-dimen-

sional weighted observed percentages and 2-dimensional

relative weight of gapless real matches to pseudocounts)

in each PSSM row were averaged over win2(3, 7, 11, 21,

27, 31, 41) for each lysine residue.

The capability of features to predict ubiquitination

sites (formulated as a binary classification problem) was

assessed using three algorithms: Naı̈ve Bayes, Random

Forest and SVM. We chose these three algorithms

considering that they have been previously used for

developing ubiquitination site prediction servers.

Naı̈ve Bayes and Random Forest algorithms were

implemented via the Weka (version 3–6-9) package

[33] and 1000 trees were built using the Random

Forest algorithm. For SVM, we used SVM-light

(http://svmlight.joachims.org/) and selected the

RBF as the kernel function to build the models. To

improve SVM performance, two parameters (regular-

ization parameter C and width parameter g) were

preliminarily optimized through a grid search strategy.

Five-fold cross-validation test and independent tests

were conducted to assess the performance and import-

ance of individual features. During assessment, we also

examined the impact of the window size on the pre-

dictive power of features. Four window sizes (21, 25,

27 and 41) were adopted and assessed according to

previous studies of ubiquitination site prediction.

Performance evaluation metrics
To comprehensively assess the predictive perform-

ance of the methods, we plotted receiver operating

characteristic (ROC) curves [34, 35] by varying pre-

diction thresholds. Two performance measures based

on the ROC curve, total area under ROC curve

(AUC) and relative area under ROC curve with

limiting up to a 10% false positive rate (AUC01)

Table 3: Individual features used in previous ubiquitination site prediction methods

Feature type Biological interpretation Citation

AAC (amino acid content) The amino acid composition of the sequence fragments surrounding ubiquitina-
tion sites.

[15, 16, 19]

AGG (aggregation opensity) The aggregation propensity of the sequences surrounding ubiquitination sites. [20]
AAindex Based on the AAindex database [14], AAindex encoding reflects the physico-

chemical properties of the sequences surrounding ubiquitination sites.
[13, 18, 20]

BLOSUM62 The BLOSUM62 matrix is adopted to represent the protein primary sequence
information, which reflects the similarity of two sequence fragments.

[16]

Charge-hyd (charge/
hydrophobicity ratio)

The charge and hydrophobicity ratio of the sequences surrounding ubiquitination
sites.

[15, 26]

CKSAAP (composition of
k-spaced amino acids pairs)

The CKSAAP encoding reflects the short range interactions of residues within
the sequences surrounding ubiquitination sites.

[17, 20, 27^29]

Binary The binary encoding reflects the position-specific information of the amino acids
surrounding ubiquitination sites.

[15, 18]

Disorder The predicted disorder information of the residues surrounding ubiquitination
sites.

[15, 18]

KNN The KNN encoding implies the clustering information of sequences surrounding
ubiquitination sites.

[19]

PSSM (position-specific
scoring matrix)

The PSSM reflects the evolutionary information of the amino acids surrounding
the ubiquitination sites.

[15, 16, 18]
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were calculated for robust performance evaluation.

Generally, an AUC value closer to 1 and an AUC01

value close to 0.1 indicate better performance.

Statistical tests
We performed statistical tests to evaluate the signifi-

cance of performance differences between all pairs of

prediction methods and all pairs of individual fea-

tures. This analysis determined the likelihood that a

given method or feature performed significantly

better than another one. The bootstrap test, origin-

ally proposed by Hanley and McNeil [36], was

adopted to compare the paired AUCs or AUC01s.

Taking the comparison of the paired AUCs as an

example, the following formula was used:

D ¼
AUC1� AUC2

SdðAUC10 � AUC20Þ
ð1Þ

where AUC1 and AUC2 are the two original AUCs,

while AUC1’ andAUC2’ are the bootstrap resampled

AUCs and Sd denotes the standard deviation. We

computed Sd(AUC1’-AUC2’) with 100 bootstrap

replicates. In each replicate, the original measure-

ments were resampled with replacement and the

corresponding new ROC curves were plotted.

Therefore, the resampled AUC1’ and AUC2’, and

their difference (i.e., AUC1’-AUC2’) were com-

puted. Because D approximately follows a normal

distribution, the P-value could be readily calculated.

We performed the bootstrap tests using the pROC

[37] package of R (http://www.r-project.org/)

by comparing pairs of ROC curves in terms of

AUC orAUC01. For all comparisons, P� 0.05

indicated significant difference in the predictive

abilities between two compared predictors or

features.

RESULTSANDDISCUSSION
Performance comparison of different
prediction methods
No ubiquitination site predictor is universally best
Four species-specific datasets were used to assess the

performance of five popular ubiquitination site

prediction methods. To assess predictive capacity,

we examined overall performance using AUC

value and analyzed performance at high specificity

using AUC01 value, which reflected the practical

utility of a predictor in real-life applications. The

larger the AUC01 value, the more ubiquitination

sites were identified at a low false-positive rate.

Figure 1 shows the ROC curves of the five com-

pared methods based on the four species-specific

datasets.

For the S.dataset, UbPred and CKSAAP_UbSite

were the best-performing predictors with an AUC

of 0.630 for UbPred and 0.616 for CKSAAP_UbSite

(Figure 1A). In terms of statistical significance, the

P-values for AUC and AUC01 between UbPred

and CKSAAP_UbSite were 0.3276 and 0.8557, re-

spectively, which were larger than 0.05, indicating

the performance difference between the two meth-

ods was not significant. By contrast, AUC value was

0.609 for UbiProber_H.sapiens and 0.608 for

UbiProber_Combined. Nevertheless, UbPred

(AUC01¼ 0.016) and CKSAAP_UbSite

(AUC01¼ 0.015) had higher AUC01 values than

UbiProber_H.sapiens (AUC01¼ 0.007) and

UbiProber_Combined (AUC01¼ 0.007). Indeed,

the P-values showed that the AUC01 differences

were significant (e.g., the P-value for UbPred

versus UbiProber_H.sapiens is 1.063 � 10�8;

Table 4), indicating that UbPred and

CKSAAP_UbSite are more practical for predicting

potential ubiquitination sites for S. cerevisiae. These

results were not surprising because both UbPred

and CKSAAP_UbSite were developed specifically

for S. cerevisiae, while UbiProber_H.sapiens and

UbiProber_Combined were not. We also noted

that current ubiquitination site predictors could

achieve acceptable but not highly satisfactory per-

formance when predicting yeast ubiquitination

sites. A possible reason is that the number of

known yeast ubiquitination sites is not sufficient

enough to fully exploit the sequence pattern of

yeast ubiquitination sites.

We found that hCKSAAP_UbSite had the best

performance for predicting ubiquitination sites on

both H.dataset (AUC¼ 0.662) and M.dataset
(AUC¼ 0.677), followed by UbiProber_H.sapiens

and UbiProber_Combined (Figure 1B and C). The

latter two tools had AUC values of 0.637 and 0.637

for H.dataset, and 0.662 and 0.658 for M.dataset, re-

spectively. The overall performance of both

UbiProber_H.sapiens and UbiProber_Combined

was close to that of hCKSAAP_UbSite. However,

the comparison of AUC01 values in Supplementary

Tables S2 and S3 suggested that hCKSAAP_UbSite

had a significant higher AUC01 than

UbiProber_H.sapiens and UbiProber_Combined.

All predictors did not achieve satisfactory perform-

ance for ubiquitination site prediction when

Towards more accurate prediction of ubiquitination sites 645
 at C

hina A
gricultural U

niversity on July 31, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

'
'
'
'
'
'
'
'
p
http://www.r-project.org/
p
false 
p
p
p
-
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbu031/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbu031/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbu031/-/DC1
http://bib.oxfordjournals.org/


evaluated using the A.dataset (Figure 1D). On

this dataset, the highest AUC value was 0.558

for UbiProber_H.sapiens. This prediction

performance was close to random prediction, as

0.5 AUC and 0.005 AUC01 indicate random

prediction. The reason might be ascribed

to the fact that the training datasets of the five

predictors contained no ubiquitination data from

A. thaliana. We performed statistical tests to exam-

ine the significance of performance differences

between all pairs of predictors (Supplementary

Table S4). All P-values between any two predictors

were larger than 0.05, proving the null hypothesis of

no significant performance difference for all

predictors in predicting A. thaliana ubiquitination

sites.

We concluded that currently, no universal best

predictor exists for predicting ubiquitination sites

across all species. Both the results in Figure 1

and our statistical tests showed that UbPred

and CKSAAP_UbSite are good choice for users to

predict ubiquitination sites in S. cerevisiae.
The hCKSAAP_UbSite tool had the best perfor-

mance for M. musculus and H. sapiens. However,

none of the five predictors were suitable for predicting

ubiquitination sites for A. thaliana, indicating the

need for a ubiquitination site predictor specific for

A. thaliana.

Figure 1: ROC curves of the five compared methods based on the four benchmark species-specific datasets.
The performances of all the tools on the S.dataset, H.dataset, M.dataset and A.dataset are shown in panels (A^D),
respectively. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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Integration of individual predictors significantly
improves prediction accuracy
We investigated whether the integration of the pre-

dictors that we compared improved performance.

The outputs of different individual predictors were

combined using a logistic regression approach. Each

of the four datasets was divided into two subsets: one

for training the logistic regression model and one to

be the test dataset to evaluate performance of the

combined predictor. We performed experiments by

enumerating all possible combinations of the com-

pared predictors and examining the performance ofTa
bl
e
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Figure 2: The performance of the combined pre-
dictors. The x-axis is the number of predictors, the
y-axis represents the AUC01 values of combined pre-
dictors. The performances of the combined predictors
on S.dataset, H.dataset and M.dataset are shown in
panels (A^C), respectively.
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the resulting k-predictors (where k is the number of

the combined individual predictors, 2�k�8). The

final prediction score P of the combined predictor

was defined as:

logð
P

1� P
Þ ¼

Xk

i¼1

biSi þ a ð2Þ

where the coefficient bi of the prediction score Si,
and the constant term a were deduced via a regres-

sion process, and k, which denotes the number of

individual predictors in the combined predictor,

varied from 2 to 8. According to the definition,

the final prediction score P is the probability that

the residue of interest is a ubiquitination site. The

generalized linear model (i.e. the glm function) in R

(http://www.R-project.org/) was used to generate

the logistic regression model (see Supplementary

Table S5 for the optimal regression formula).

We built combined predictors by integrating k
single predictors. For each k, we mainly focused on

the combined predictor that achieved the highest

AUC01 value, as predictive ability at high specificity

is considered most important in practical applications.

By integrating different individual predictors, the

combined predictors further improved performance

compared with the best individual predictors

(i.e., k¼ 1) (Figure 2). For S.dataset (Figure 2A), the

highest AUC01 value was reached when k¼ 4

(i.e., when UbPred, CKSAAP_UbSite, UbiPred

and UbiProber_S.cerevisiae were combined),

and AUC01 value improved from 0.017 to

0.019. For H.dataset (Figure 2B), when k¼ 4 (com-

bining hCKSAAP_UbSite, UbiProber_H.sapiens,

UbiProber_M.musculus and CKSAAP_UbSite), we

achieved the highest AUC01 (AUC01¼ 0.0187).

For M.dataset (Figure 2C), the highest AUC01

value achieved by a single predictor was 0.020.

In contrast, when combining two predictors (UbiPro-

ber_S.cerevisiae and UbiProber_M.musculus), the

AUC01 reached 0.025. We did not discuss the

corresponding performance on the A.dataset, because

no single predictor was found to be suitable for

predicting ubiquitination sites in this species. Our

results showed that the predictive ability of existing

tools could be further improved through a simple lo-

gistic regression integration approach. In this way, the

combined predictor could harness the advantages of

different individual predictors. In practical applica-

tions, users could better determine if a particular

lysine residue in a protein sequence is more or less

likely to be a ubiquitination site by combining the

results from several predictors. Nonetheless, we rec-

ommend that bioinformatics researchers develop

novel meta or consensus predictors to improve pre-

diction accuracy.

Species-specific sequence patterns challenge current
ubiquitination site predictors
The lack of universal ubiquitination site predictor

could be partly explained by differences in sequence

patterns around ubiquitination sites in the four

datasets. These patterns can be visualized using two-

sample logo representation [38], which identifies and

displays significant differences in position-specific

amino acid compositions between two sets of mul-

tiple sequence alignments (i.e., ubiquitination sites

versus non-ubiquitination sites). In the graphical

output of two-sample logo, the upper section displays

a set of amino acids enriched around ubiquitination

sites, the lower section displays a set of amino acids

depleted around ubiquitination sites, while the

middle section displays consistent residues. Figure 3

shows two sample logos of four datasets. The se-

quence pattern of A.dataset is more widely scattered

than the pattern for the other three datasets. The

A.dataset sequence pattern is difficult to depict because

it has only two types of hydrophobic residues [39] (I

and L) enriched in more than three positions (�9,�5,

+7, +10;�4, +2, +3 and +10). A common feature of

the sequence patterns in the other three datasets is that

positively charged residues [40] (H, K and R) are sig-

nificantly depleted at varying positions from�6 to +6

surrounding the ubiquitination sites. However, this

preference was not observed in A. dataset.
Accordingly, the poor performance for A. thaliana of

current ubiquitination site predictors, which were

trained using data from the other three species,

could have been expected. In addition, compared

with M.dataset and H.dataset, a remarkable difference

for S.dataset is that negatively charged [40] amino acids

(D and E) appeared to be more frequently distributed

around the ubiquitination sites (�3, �2, �1, +1, +3

and +6). Therefore, species-specific predictors are

recommended as the first choice for predicting S. cer-
evisiae ubiquitination sites (Figure 1A). Sequence pat-

terns for M.dataset and H.dataset closely resembled

each other. For example, the hydrophobic residues

(A, G, F, I, L and V) were enriched at positions

from �4 to +4 around the ubiquitination sites, and

the positively charged residue (R) was also signifi-

cantly enriched in the flanking regions on both sides
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from positions�13 to�7 and 7 to 13. This phenom-

enon might be because mice are evolutionarily closer

to human than to plants or yeast. Thus, a H. sapiens
ubiquitination site predictor could be used to predict

ubiquitination sites for M.musculus.
We concluded that the ubiquitination sites from

different species were surrounded by distinct sets of

characteristic amino acids with different physio-

chemical properties. This phenomenon was

especially clear when studying two distally

related species. The physiochemical properties of

specific amino acids around lysine residues might

therefore be used as informative features for

building models to predict ubiquitination sites, as

suggested in previous studies [13, 15, 18, 20]. Also,

given the contrasting difference in the sequence pat-

terns of the four datasets, we suggest that users should

initially consider using species-specific predictors to

Figure 3: TheTwo-Sample-Logo representation of position-specific residue composition surrounding the ubiquiti-
nation sites and non-ubiquitination sites, based on S.dataset (A), H.dataset (B), M.dataset (C) and A.dataset (D). The
two logo graphs were generated using the web server http://www.twosamplelogo.org/. Only residues significantly
enriched or depleted (t-test, P< 0.05) flanking the centred ubiquitination sites (upstream13 residues and downstream
13 residues) are shown.
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predict potential ubiquitination sites in different

species.

Comparison of different tools from a
user’s perspective
We further compared different tools, assessing

developed webservers or standalone software from a

user’s perspective. In particular, we compared these

aspects: (i) whether the webserver supported batch

prediction; (ii) whether the method had standalone

software to implement its algorithm; and (iii) limitations

of the webserver or software. Our comparison is

summarized in Table 1. Among the tools we investi-

gated, UbiPred was the only one that did not provide a

standalone version to implement its algorithm. Its web-

server supports batch prediction, accepting a maximum

of 100 FASTA protein sequences at a time, and the

submitted jobs are generally completed within a few

seconds. The prediction output for a potential ubiqui-

tination site includes four items: residue position,

sequence fragment, annotation (‘Y’or ‘‘N’’) and predic-

tion score.

The UbPred webserver allows prediction of only a

single sequence per user at a time, although users can

download and install standalone versions of UbPred

for both Linux and Windows operating systems to

run batch prediction tasks. The UbPred output is in

three columns: residue position, ubiquitination

scores and predicted ubiquitination site annotation.

Depending on the prediction score, three stringency

thresholds of low, medium and high confidence are

available. In general, for a typical protein sequence

with around 500 amino acid residues, completing a

single prediction task takes about 10 seconds.

Figure 4: The performance of individual features on the four benchmark datasets.The features were sorted in the
order of their AUC values in the 5-fold cross-validation test. The solid lines denote the AUC values, while the
dashed lines are the AUC01 values. The performances of the individual features on S.dataset, H.dataset, M.dataset
and A.dataset are given in panels (A), (B), (C) and (D), respectively. A colour version of this figure is available at
BIB online: http://bib.oxfordjournals.org.
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Users of CKSAAP_UbSite and

hCKSAAP_UbSite can submit protein sequences in

RAW or FASTA format to webservers and select

models for different species. The processing time

for a protein sequence was 1–2 min, which was a

bit longer than other tools. The prediction output

contains three items: residue position, prediction

score and ubiquitination site annotation. Prediction

results are stored at the webservers for a month and

users can query the results by searching through a job

list or putting the job ID in a query box. Two

thresholds, low and high confidence, are available.

To make batch predictions, users can download stan-

dalone versions of CKSAAP_UbSite and

hCKSAAP_UbSite (for Linux and available upon

request). UbiProber does not use fixed cutoffs but

allows users to adjust prediction stringency thresh-

olds. Both the webserver and standalone software

support batch prediction. The stand-alone version

of UbiProber was implemented as a Windows appli-

cation in the .NET4.0 framework using C# lan-

guage. UbiProber had several specific requirements

for input sequences: (i) the length of the FASTA

header must be longer than nine characters; (ii) the

protein sequence must be strictly formatted as 60

amino acids per line; and (iii) the maximal input

size cannot be greater than 35 kilobytes.

Relative importance and predictive
power of individual features
Overview
To assess the contribution and capabilities of individ-

ual features to the prediction of ubiquitination sites,

we evaluated 10 types of features (encoding schemes)

found to be useful in previous predictors. All features

were directly computed or derived from protein se-

quence information. The predictive capabilities of

the features were dependent on the sliding window

size and the classification algorithm used to train the

models. Therefore, we examined four window sizes

(21, 25, 27 and 41) used in previous studies and three

popular classification algorithms (Naı̈ve Bayes,

Random Forest and SVM). As a result, each feature

had 12 values (4 window sizes and 3 classification

algorithms) calculated for AUC and AUC01.

Figure 4 shows the best performance among the

four window size types and three classification

algorithms. These results were based on individual

features and both 5-fold cross-validation and inde-

pendent tests. In most cases, the results of 5-fold

cross-validation tests were in accordance with the

results from independent tests. No features

performed well for A.dataset. This result might be

attributed to two main reasons: (i) Although most

of the considered features were used to predict ubi-

quitination sites for S. cerevisiae, H. sapiens and M.
musculus, these features could not effectively describe

the characteristics of sequence context surrounding

A. thaliana ubiquitination sites; (ii) A.dataset was too

small to efficiently represent the majority of

ubiquitination sites in A. thaliana. Thus, machine

learning-based predictors did not perform well on

this limited dataset.

Important features for predicting ubiquitination sites
To assess the importance of the features, we ranked

them based on AUC values (Supplementary Table

S6). Only results achieved using the best window

size and best classification algorithm were used for

the ranking. In most cases, the AUC value ranking

was consistent with the AUC01 value ranking.

Moreover, we defined a significant contribution to

prediction as a feature with an AUC value larger

than 0.600 and an AUC01 value larger than 0.010.

As a result, the top three most powerful features for

S.dataset were AAC, PSSM and AAindex (Table 5).

For H.dataset and M.dataset, the top three most

powerful features were AAC, PSSM and CKSAAP.

However, only AAC and KNN encoding schemes

satisfied our criterion for the A.dataset. AAC encod-

ing had the best performance in predicting ubiquiti-

nation sites across all four datasets, suggesting that

AAC surrounding ubiquitination sites was discrim-

inative and could be distinguished from non-ubiqui-

tinated sites. For S.dataset, H.dataset and M.dataset, the

PSSM encoding was another powerful feature for

identifying ubiquitination sites. The results were

understandable because mammalian ubiquitination

sites are slightly more conserved than unmodified

lysine residues [41]. CKSAAP encoding that de-

scribes short-range interactions of residues within a

sequence or a sequence fragment [17] was also a

powerful feature, achieving good performance on

M.dataset and H.dataset.

Effects of window size and classification methods on
prediction performance
The window size and the classification methods

adopted differed from each other in previous studies.

From Table 5, we concluded that the optimal

window size and classification methods depended

on the dataset and feature type. To further explore

this possibility, we calculated the optimal window
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size and classification method for the four datasets

using our criterion of AUC value larger than 0.600

and AUC01 value larger than 0.010 (Although these

thresholds were relatively arbitrary, we found that

the conclusion remained largely unchanged when

different thresholds were applied). We found that

26 out of 40 test results (4 datasets times 10 features)

met this criterion. For the optimal window size

(Supplementary Figure S1A), the window size 41

had a much higher percentage (accounting for

53.85%) among all the four kinds of window sizes,

followed by the window sizes 27, 25, and 21 which

accounted for 30.77,11.54 and 3.85%, respectively.

The results indicated that window size 41 was opti-

mal for most of the considered features and use of

distant sequence features could improve predictive

performance [16]. For classification methods,

Random Forest was the algorithm with the best-per-

formance for the most informative features across the

four datasets, followed by the SVM algorithm

(Supplementary Figure S1B). This result suggested

that algorithms such as Random Forest and SVM

were especially suitable for higher-dimensional and

complicated features and were more powerful in

predicting ubiquitination sites than simple Naı̈ve

Bayes algorithm.

Prediction performance of models using combined
features
We integrated the results of the features that showed

good performance to determine if we could achieve

optimal combination of the features through a logis-

tical regression approach. Figure 5 shows prediction

performance using feature combination. Combining

the features led to 1–4% AUC improvement, de-

pending on the dataset. The optimal combination

of features is given in Table 6, and the corresponding

machine learning algorithm, window size and regres-

sion weighting of each individual feature for the four

datasets are listed Supplementary Table S7.

However, a bootstrap test showed that not all im-

provements were statistically significant. For S.dataset,
H.dataset and M.dataset, all P-values were <0.05

with the exception of AUC improvement for

S.dataset (bootstrap P-value ¼ 0.073), indicating a

significant performance improvement for the com-

bined features on the three datasets. For A.dataset,
however, P-value of AUC difference between the

best single feature and the combined features is

0.619. This result meant that combining features

did not lead to a significant improvement, possiblyTa
bl
e
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due to the poor predictive ability of the individual

features and the small A.dataset sample size.

Future perspectives
Successful prediction of ubiquitination sites requires
careful predictor choice
The first ubiquitination site predictor UbiPred

was developed five years ago [13]. By deriving

useful features from a multispecies dataset, UbiPred

had been expected to be suitable for predicting

ubiquitination sites for a wide spectrum of eukaryotes.

However, our results indicated that UbiPred achieved

acceptable performance only for predicting yeast

ubiquitination sites, which was the source of

most of its training data (Figure 1A). The same

result is seen for the second multispecies ubiq-

uitination site predictor, UbiProber_combined [19].

Its training set was mainly a large number of

mammalian ubiquitination sites and this predictor

had much better predictive power when tested on

mammalian datasets (Figure 1B and C). Because

these two general ubiquitination site predictors

cannot be widely applied, species-specific predictors,

if available, are preferred. However, as shown by

independent tests, few species-specific predictors

had relatively satisfactory performance. UbPred

and CKSAAP_UbSite outperformed other predictors

on the yeast dataset, while hCKSAAP_UbSite had

the best performance when used to predict mamma-

lian ubiquitination sites. A reliable ubiquitination site

Figure 5: ROC curves of the best-performing single features and the combined optimal features. The perform-
ances of the best single feature and the combined optimal features on S.dataset (A), H.dataset (B), M.dataset (C)
and A.dataset (D) are shown. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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predictor dedicated to Arabidopsisis yet to be

developed.

Developing a novel species-specific ubiquitination

site predictor is not easy and straightforward. Among

many other factors, better encoding of flanking se-

quences remains an important issue to be addressed.

Through the ongoing efforts of bioinformaticians, a

number of ubiquitination site-related sequence fea-

tures have been proposed. We tested the perform-

ance of several representative features used in

previous studies. The most striking result was that

simple amino acid composition together with opti-

mal window size and the appropriate machine learn-

ing algorithm achieved prediction performance

comparable to other sophisticated encoding schemes

(Figure 4). Another interesting result concerning fea-

ture combination was that a model’s performance did

not always increase when more features were con-

sidered. The top four or five features usually

achieved maximum performance in combination.

These results highlighted the importance of the

design of feature-encoding schemes and the identi-

fication of novel sequence features. Researchers must

also optimize sliding window size to extract sequence

context surrounding ubiquitination sites and deter-

mine machine learning algorithm suitable for train-

ing the models.

Ubiquitination site prediction: thirst for new data
The last decade has witnessed a rapid accumulation

of high-throughput ubiquitination data, especially

for humans. As a consequence, characteristic se-

quence patterns surrounding human ubiquitination

sites can be clearly determined. In comparison, a

few years ago, the sequence logo of human ubiqui-

tination sites was sparse, and the overrepresentation

and underrepresentation of specific residues were not

clear. The current sequence logo, as exemplified in

this review (Figure 3), contains enriched information

about site-specific amino acid preference. As ex-

pected, the improvement of sequence logo

representation is in accordance with the increased

sensitivity of recently developed predictors (Figure

1).

The question of how available experimental data

limit the predictor performance is answered in

Figure 5, which shows that the best single feature

achieved a cross-validation AUC higher than 0.75

on the human dataset (containing �7000 sites).

However, the corresponding single best feature

reached only a cross-validation AUC of 0.65 for

the Arabidopsis dataset (containing �200 sites).

Thus, the greatest chance for further improvement

of non-mammalian ubiquitination site predictors ap-

peared to depend on the availability of new high-

throughput ubiquitination data. Non-mammalian

ubiquitination site predictors will benefit from new

high-throughput data by correcting potential bias

and enhancing robustness. However, even current

mammalian ubiquitination site data are far from per-

fect. In many cases, little knowledge about ubiquitin

linkage (e.g., monoubiquitination, K63-/K48-linked

polyubiquitination) and catalyzing enzymes can be

obtained from high-throughput technology. The

ubiquitination system is complicated, so current ubi-

quitination site datasets are likely to be mixtures of

different groups of ubiquitination sites. We expect

that novel, sizable data about catalyzing enzymes

and ubiquitin linkage will propel the development

of powerful ubiquitination site predictors. Therefore,

we recommend that developers update and calibrate

ubiquitination site predictors based on new data to

ensure the competitiveness and performance of their

predictors.

Apart from newly collected ubiquitination data,

related information such as the presence of other

PTM sites and structural propensities could also be

helpful for further improving predictors. For ex-

ample, Bork and collaborators showed that func-

tional crosstalk between PTMs is ubiquitous in

eukaryotic proteomes and several pairs of PTM

Table 6: The optimal combinations of the features for the four datasets

Dataset Single feature Combined features

Type AUC AUC01 Type AUC AUC01

S.dataset AAC 0.696 0.018 AAC+PSSM+Charge-hyd+BLOSUM62+AGG 0.722 0.026
H.dataset AAC 0.746 0.017 AAC+CKSAAP+PSSM+Charge-hyd+AGG 0.761 0.021
M.dataset AAC 0.745 0.017 AAC+KNN+CKSAAP+PSSM+Charge-hyd+

Binary+BLOSUM62+AGG
0.779 0.023

A.dataset AAC 0.623 0.017 CKSAAP+PSSM+Disorder+Binary+AGG 0.655 0.020

654 Chen et al.
 at C

hina A
gricultural U

niversity on July 31, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


sites including ubiquitination and phosphorylation

sites exhibit a strong tendency toward co-occurrence

and co-evolution [42]. Phosphorylation is the most

well-studied PTM type and several accurate phos-

phorylation site predictors are available. Therefore,

interrogating and encoding co-occurrence or co-

evolution with a phosphorylation site as novel and

potentially useful features is likely to facilitate the

prediction of ubiquitination sites. Our laboratory

has recently analyzed informative structural features

associated with ubiquitination sites [43] and found

that several novel structural propensities of ubiquiti-

nation sites such as protrusion index and centrality

tend to be complementary to sequence pattern. Our

analysis also indicated that the integration of struc-

tural propensities and sequence pattern could further

improve the prediction performance of ubiquitina-

tion sites.

CONCLUSION
We used four species-specific datasets (S.dataset,
H.dataset, M.dataset and A.dataset) from five recent

large-scale proteomic studies to assess currently avail-

able ubiquitination site prediction methods that pro-

vide webservers or standalone software to implement

their algorithms. Using these benchmark datasets, we

comprehensively compared method performances.

We discussed the advantages and disadvantages of

the webservers and stand-alone software from differ-

ent aspects to guide users to choose tools that best

suit their purposes. Finally, we tested the major fea-

tures used in existing ubiquitination site predictors

and ranked the features according to their contribu-

tion to the predictive performance of species-specific

ubiquitination sites. We also evaluated the predictive

abilities of combinations of features to identify the

optimal combination that led to the overall best

performance.

The major observations from our analysis are first,

that no universal best predictors are currently available

for predicting ubiquitination sites for all four species

that we investigated. In particular, none of the existing

predictors was suitable for predicting ubiquitination

sites in A. thaliana. Second, although the performance

of existing predictors on S.cerevisiae, M.musculus and H.
sapiens datasets was acceptable, there is room to further

improve prediction performance by combining differ-

ent predictors through simple approaches such as logis-

tic regression. Third, AAC encoding generally

performed the best in predicting ubiquitination sites

across all four datasets and combination of features

could result in improved performance in most cases.

Finally, we emphasize that the main purpose of

this analysis was not to simply rank different pre-

dictors through a rigorous performance comparison.

Rather, we would also like to mention common

issues that this new and promising field must deal

with in the near future from the perspectives of

both users and developers. For instance, the perform-

ance of the predictors tested in this analysis was less

impressive than the performance reported in the ori-

ginal papers, implying performance overestimation

may exist in previous studies. To avoid such per-

formance overestimation, more extensive data col-

lection and more careful feature representation are

required in further development of ubiquitination

site predictors. Fortunately, as more ubiquitination

sites are experimentally verified, standard training

and testing datasets are likely to be available to the

community in the near future. These data will help

developers construct and benchmark their methods

more reliably and assist users in obtaining more rea-

sonable explanations of prediction results. We there-

fore anticipate that better ubiquitination site

prediction methods and tools with improved per-

formance will continue to emerge as increasing

amounts of ubiquitination data and rapidly evolving

computational techniques become available.

SUPPLEMENTARYDATA
Supplementary data are available online at

http://bib.oxfordjournals.org/.

Key Points

� A number of computational tools have recently been developed
for predicting protein ubiquitination sites. However, these tools
have different training datasets, prediction algorithms, function-
ality and features, complicating their utility and application.

� We systematically assessed the performance of currentubiquiti-
nation site prediction tools using novel independent testing data-
sets from S. cerevisiae,H. sapiens,M.musculus and A. thaliana.The
results implied that these tools could achieve somewhat accept-
able but not highly satisfactory accuracies, and notably, there is
no universal best predictor suitable for predicting ubiquitination
sites in all species.

� For theusers fromexperimental biologist communities, species-
specific prediction tools, if available, are ofbest choice to predict
ubiquitination sites in the closely relative species. To conduct
proteome-wide prediction, a tool implementing batch predic-
tion should be preferred.

� For the computational tool developers, as we have extensively
evaluated the predictive abilities of individual features and their
combinations, an optimal combination of features will be a good
strategy to constructmore powerful tools in the future.
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