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information was taken into account. Then, by employing 
the Random Forest algorithm, the performance of CRS 
was evaluated and compared with several other encoding 
schemes commonly used for sequence-based protein–pro-
tein interaction prediction. Through the tenfold cross-vali-
dation tests on a balanced training dataset, CRS performed 
the best, with the average accuracy up to 72.01 %. We 
further integrated CRS with other encoding schemes and 
identified the most important features using the mRMR 
(the minimum redundancy maximum relevance) feature 
selection method. Our SPAR model with selected features 
achieved an average accuracy of 92.09 % on the human-
independent test set (the ratio of positives to negatives was 
about 1:11). Besides, we also evaluated the performance of 
SPAR on an independent yeast test set (the ratio of posi-
tives to negatives was about 1:8) and obtained an average 
accuracy of 76.96 %. The results demonstrate that SPAR 
is capable of achieving a reasonable performance in cross-
species application. The SPAR server is freely available for 
academic use at http://systbio.cau.edu.cn/zzdlab/spar/.

Keywords Self-interacting protein · Prediction · Machine 
learning · Feature selection · Domain–domain interaction

Introduction

Protein–protein interactions (PPIs) have received much 
attention due to their important roles in living organ-
isms. Whether and how proteins interact with their pro-
tein partners is a fundamental question for their functional 
studies. Protein self-interaction is a special type of PPI, 
where two interaction partners are two identical copies 
expressed by the same gene, and it results in the forma-
tion of homo-oligomer. Recent studies have shown that 

Abstract Protein self-interaction, i.e. the interaction 
between two or more identical proteins expressed by one 
gene, plays an important role in the regulation of cellular 
functions. Considering the limitations of experimental self-
interaction identification, it is necessary to design specific 
bioinformatics tools for self-interacting protein (SIP) pre-
diction from protein sequence information. In this study, 
we proposed an improved computational approach for SIP 
prediction, termed SPAR (Self-interacting Protein Analy-
sis serveR). Firstly, we developed an improved encod-
ing scheme named critical residues substitution (CRS), 
in which the fine-grained domain–domain interaction 
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homo-oligomerization plays a crucial role in a wide range 
of biological processes, such as gene expression regula-
tion, signal transduction, enzyme activation and immune 
response (Woodcock et al. 2003; Koike et al. 2009; 
Baisamy et al. 2005; Hattori et al. 2003; Katsamba et al. 
2009).

The biological advantages of homo-oligomer over 
monomer have been elaborated by Marianayagam et al. 
(2004). For instance, self-interaction is a key factor in the 
regulation of protein function through allostery. Through 
self-interaction, the functional diversity of proteins can be 
vastly extended without the need of increasing genome 
size. In addition, self-interaction is conducive to improving 
the stability and preventing the denaturation of a protein by 
reducing its surface area (Miller et al. 1987).

Self-interacting proteins (SIPs) have a significant dis-
position to be located at the hub in protein interaction 
networks (PINs). In other words, they can interact with a 
large number of other protein partners, which indicates its 
functional importance for cellular systems (Ispolatov et al. 
2005). Due to high-level expression, SIPs generally have 
lower aggregation propensities against misfolding (Chen 
and Dokholyan 2008). In addition, genes that encode SIPs 
tend to have higher duplicability than others, and they 
appear to have arisen more often at the whole-genome level 
rather than at the small scale (Perez-Bercoff et al. 2010). 
Moreover, exon-shuffling events might promote the acqui-
sition of self-interacting capacity in proteins and the crea-
tion of novel PPIs (Cancherini et al. 2010).

Previous studies have shown that self-interaction is 
mediated by specific protein domains. To study the mech-
anisms of self-interaction, Akiva et al. (2008) used self-
interacting domains as a model and found that enabling/
disabling loops uncovered at surface could be considered 
as determinants of the interactions. In addition, Hashimoto 
and Panchenko (2010) observed that insertions and dele-
tions play a critical role in maintaining different oligomeric 
states of SIPs. Up to date, several molecular mechanisms 
of self-interaction have been proposed (Hashimoto et al. 
2011), including domain swapping, ligand-induced, residue 
substitution or post-translational modifications (PTMs) at 
the interfaces, insertions and deletions.

Although a variety of experimental and computational 
methods have been designed for PPI identification (Zhou 
et al. 2012; Zahiri et al. 2013; Zaki et al. 2009), these meth-
ods have certain limitations when being applied to protein 
self-interaction identification. Firstly, due to biological arti-
facts and design limitations, two common types of high-
throughput protein interaction assays, i.e. Y2H and TAP/
MS, have limited capacity for detecting SIPs (Gibson and 
Goldberg 2009). Secondly, a majority of computational 
methods for PPI prediction often consider the correlational 
information between protein pairs, such as co-expression, 

co-localization and coevolution. However, such informa-
tion is unavailable when dealing with two identical protein 
partners. Moreover, the datasets used to construct most of 
the methods did not include the PPIs between identical 
partners, which makes them not suitable for SIP prediction. 
In a previous study, Liu et al. (2013) integrated multiple 
representative known properties to construct a prediction 
model and developed an online predictor named SLIPPER 
for human SIP prediction. Note that SLIPPER is not a pure 
sequence-based predictor, as the PIN feature (i.e. network 
degree) made the largest contribution to its performance. 
Therefore, the major drawback of this method is that it can-
not deal with the proteins that are not covered by the cur-
rent human interactome.

Given the aforementioned limitations of existing meth-
ods, it is desirable to develop a more effective computa-
tional approach for protein self-interaction prediction based 
on protein sequences. Using the Random Forest (RF) algo-
rithm (Breiman 2001), in this study, we designed a RF-
based approach, termed SPAR (Self-interacting Protein 
Analysis serveR), for predicting SIPs based on an improved 
sequence-encoding scheme, which exploits the fine-grained 
domain–domain interaction (DDI) information from the 
3did database (Mosca et al. 2014).

Materials and methods

Data collection and dataset construction

A total of 20,199 curated human protein sequences 
were downloaded from the UniProt database (version 
2015.04.01) (UniProt 2015). The PPI data were col-
lected from a variety of resources, including DIP (version 
20150101) (Salwinski et al. 2004), BioGRID (version 
3.3.123) (Chatr-Aryamontri et al. 2015), IntAct (version 
2015.04.09) (Orchard et al. 2014), InnateDB (version 
2015.04.20) (Breuer et al. 2013) and MatrixDB (version 
2014.12.16) (Launay et al. 2015). Here, we only extracted 
those PPIs for which the two interaction partners were 
identical and whose interaction type was annotated as 
‘direct interaction’ in relevant databases. As a result, we 
obtained 2994 human protein self-interaction instances.

In order to train a prediction model and evaluate its per-
formance properly, a golden standard (GS) dataset was 
constructed. In the first step, the short (<50 residues) and 
long (>5000 residues) proteins were removed from the 
whole human proteome. Then, for the GS positive data-
set (GSP), we refined the protein self-interaction data by 
ensuring that each sample in GSP must be a high-quality 
SIP, which satisfies one of the following conditions: (1) the 
self-interaction is detected by at least two kinds of large-
scale experiments or one small-scale experiment; (2) the 
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protein is annotated as homo-oligomer (including homodi-
mer and homotrimer) in UniProt; (3) the self-interaction 
is reported by at least two publications. Here, we mainly 
referred to the BioGRID database (Chatr-Aryamontri et al. 
2015) for the definition of experimental methods. To con-
struct the GS negative dataset (GSN), all types of the SIPs 
were removed from the whole human proteome (including 
proteins annotated as ‘direct interaction’ and more exten-
sive ‘physical association’). In addition, the predicted SIPs 
annotated in UniProt were also removed. The resulting GS 
dataset included 1441 SIPs as positives and 15,938 non-
SIPs as negatives.

Furthermore, to investigate the cross-species per-
formance of SPAR, we also used the same strategy as 
described above to construct the yeast GS dataset, which 
contained 710 positive samples and 5511 negative samples.

Sequence‑encoding schemes

In this study, we proposed an improved feature-encod-
ing scheme, named critical residues substitution (CRS). 
Firstly, we used HMMER3 (Finn et al. 2011) to identify 
the significant Pfam domains (Finn et al. 2014) contained 
in each protein sequence. All the parameters were set as 
default. After that, we could extract the self-interacting 
domain information, by querying the DDI information 
in the 3did database (version 2015.03.11). Furthermore, 
we could identify the possible sites at the binding inter-
face through the alignment between the query sequence 
and the domain consensus sequence in HMMER3 results. 
As shown in Fig. 1, our encoding scheme involved in two 

types of residue substitutions: the mostly conserved resi-
dues and the residues at DDI interface. They were regarded 
as critical information for protein self-interaction and were 
extracted to construct our feature vector. Because there 
are a total of 41 possible types (which correspond to 20 
types of conserved amino acids represented by uppercase, 
20 types of non-conserved amino acids represented by 
lowercase and the gap ‘-’) in consensus sequence and 21 
types in query sequence (which correspond to 20 types of 
amino acids and the gap ‘-’) in each sequence alignment, 
there exist 41 × 21 − 1 = 860 possible substitutions (it 
is impossible for the gap to occur at one site in both the 
consensus sequence and the query sequence). For each 
substitution X → Y from the consensus sequence to the 
sample sequence, the uppercase letters for X in the consen-
sus sequence denote conserved sites, while the others are 
not conserved. All the Ys from the sample sequence are 
represented by uppercase. Accordingly, each sequence is 
encoded as a 860-dimensional vector as follows:

where Ntotal is the total count of all substitutions, and NXY 
is the count of each type of substitution in a single protein 
sample. Each dimension in this vector stands for the fre-
quency of the corresponding substitution.

In order to benchmark the prediction performance of this 
proposed encoding scheme, six other encoding schemes 
that are commonly used for sequence-based PPI prediction 
were also involved in our study, i.e. auto-covariance (AC) 
(Guo et al. 2008), Moran autocorrelation (MAC), Geary 
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Fig. 1  Computational framework of the proposed CRS-encoding 
scheme. For the consensus sequence, the uppercase means the corre-
sponding site is conserved and the lower case denotes that the corre-
sponding site is non-conserved. The critical residues at the DDI inter-

face are colored by yellow, while the critical residues at conserved 
sites are colored by blue. In addition, a residue would be colored by 
green, if it is located at both conserved site and the DDI interface
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autocorrelation (GAC) (Xia et al. 2010), Moreau–Broto 
autocorrelation (MBMAC) (Feng and Zhang 2000), con-
joint triad (CT) (Shen et al. 2007) and local descriptor (LD) 
(Yang et al. 2010). These encoding schemes could trans-
form a protein sequence to a feature vector. These six fea-
ture schemes can be calculated automatically online using 
the PROFEAT website (Rao et al. 2011). For AC, MAC, 
GAC and MBMAC, six physicochemical properties of 
amino acids used in a previous PPI prediction study (You 
et al. 2013) were taken into account, including hydrophobic-
ity (H), volumes of side chains (VSC), polarity (P1), polar-
izability (P2), solvent-accessible surface area (SASA) and 
net charge index of side chains (NCISC). The original val-
ues of these properties are given in Supplementary Table S1. 
The corresponding feature dimensions generated by these 
schemes were 180, 180, 180, 180, 343 and 630, respectively.

Feature selection

After integrating the extracted features from sequence, 
mRMR method was applied to rank and select more impor-
tant features (Peng et al. 2005). The mRMR method ranks 
features in a two-step procedure based on the mutual infor-
mation (MI). In the first step, features are ranked based on 
the relevance D between each feature f and label variables l 
in the feature set T, which can be calculated by:

In the second step, each feature in T will be moved into S 
one by one based on the mRMR value, which is defined as:

It will be calculated for |T| rounds, and for each round, 
only one feature can be selected to move from T to S. 
Finally, the ranking of all features is obtained where the 
earlier features put into S would be placed on the top. The 
mRMR program can be downloaded from http://penglab.
janelia.org/proj/mRMR/.

Model construction and evaluation

In our study, RF was adopted to build the prediction model, 
given the fact that it is popular in the field of bioinformatics 
and has been shown to provide competitive performance com-
pared with other machine learning techniques in many appli-
cations. RF is an ensemble learning algorithm that consists of 
a certain number of decision trees. In the training process, RF 
constructs a probability distribution model by assembling the 
decision trees. For a given input feature vector, all decision 
trees in the trained model can give vote to predict which class 
it belongs to. We also compared our model with other machine 

D = MI(f , l)

max
fj∈T



Dj −
1
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learning algorithms, such as support vector machine (SVM), 
Naïve Bayes (NB) and k-nearest neighbor (KNN). Here, we 
employed the scikit-learn (Pedregosa et al. 2011), a Python 
language package, as an implementation of these algorithms. 
For the RF algorithm, the number of trees was set as 1000, and 
other parameters were set as default. The maximum of feature 
number of the RF classifier was set as the square root of the 
total number of features in each tree, and the criterion of the 
quality of a split was based on the Gini impurity by default. 
Regarding the SVM algorithm, the radial basis function (RBF) 
kernel was used. The range of parameters C and γ were set as 
[2−5, 215] and [2−15, 25]. After optimization, they were set as 
1.0 and 0.25, respectively. For the KNN algorithm, the Euclid-
ean distance was used to measure the distance between any 
two samples and k was set as 5 (by default).

In order to train and evaluate our model, the GS dataset 
was further partitioned into the training set and independent 
test set. We randomly selected 1/6 of the samples from both 
positive and negative human GS datasets as the independ-
ent test set. Given that the number of negative instances is 
much larger than the positive ones in GS dataset, we ran-
domly chose negative samples from the remaining human 
GS negative dataset to construct the training set with the 
ratio of 1:1. In order to ensure the reliability of perfor-
mance evaluation, the negative training set was repeatedly 
constructed ten times, and the results were reported in the 
form of “mean ± SD (standard deviation)”.

Furthermore, we also performed tenfold cross-validation 
tests to benchmark and compared the performance of vari-
ous models based on different types of feature-encoding 
schemes on the training dataset. The independent test was 
used for avoiding the over-fitting of feature selection by 
mRMR. In addition to the human GS dataset, the yeast GS 
dataset was also used to assess the predictive capability of 
SPAR for the cross-species prediction of SIPs. Five evalu-
ation measures, accuracy (Ac), sensitivity (Sn), specificity 
(Sp), Fmeasure and Matthew correlation coefficient (MCC), 
were used to assess the performance. They are defined as:

Ac =
TP+ TN

TP+ FN+ TN+ FP

Sn =
TP

TP+ FN

Sp =
TN

TN+ FP

Fmeasure =
2TP

2TP+ FP+ FN

MCC =
TP× TN− FP× FN

√
(TP+ FP)× (TP+ FN)× (TN+ FN)× (TN+ FP)
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where TP, TN, FP, FN represent true positive, true negative, 
false positive and false negative, respectively. When the 
above measures were used for performance comparison, 

all of them were calculated at the threshold where the 
maximum of MCC was obtained. Receiver operating char-
acteristic (ROC) curves were also plotted to comprehen-
sively evaluate the models’ performance. The area under 
the ROC curves (AUC) was also calculated to quantify the 
performance.

Results and discussion

Results of tenfold cross‑validation

Here, four different kinds of machine learning methods, RF, 
SVM, KNN and NB, were used to train prediction models 
and were compared with each other with the CRS-encod-
ing scheme. By tenfold cross-validation on the human GS 
dataset, we observed that the performance of RF method 
was better than others, for the AUC reached up to 0.7916 
(Fig. 2). Therefore, the RF algorithm was justified to be an 
excellent machine learning method to construct our predic-
tion model in this work.

Then, we constructed different RF models by using the 
CRS and other six encoding schemes and evaluated their 
prediction performance on the human GS dataset (Fig. 3a). 
Table 1 also illustrates the prediction results via tenfold 
cross-validation. Compared with other feature-encod-
ing schemes, CRS outperformed other schemes in terms 

Fig. 2  ROC curves of the different types of machine learning algo-
rithms (i.e. RF, SVM, KNN and NB) based on the results of tenfold 
cross-validation on the human GS dataset

Fig. 3  ROC curves of the different types of feature-encoding 
schemes based on the results of tenfold cross-validation on the human 
GS dataset. The performances were obtained (a) without domain fea-

tures and (b) with domain features, respectively. Parameters in brack-
ets are the AUC values of each prediction model
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of the average values of Ac = 72.01 %, Sp = 61.73 %, 
Sn = 82.29 % and MCC = 0.4528 with smaller SD values. 
These results also demonstrated the robustness of CRS. 
These six encoding schemes have been proved to be effec-
tive for PPI prediction, especially the interaction between 
different partners. For instance, Guo et al. (2008) applied 
the AC-encoding scheme to construct an SVM model and 
achieved an average Ac of 88.09 % in their PPI prediction 
study. However, we noted that the performance of the AC-
encoding scheme tested on our dataset for prediction of 
protein self-interaction was not remarkable (with an aver-
age Ac of only 61.47 %, Table 1).

It is well known that protein self-interactions are deter-
mined by self-interacting domains. Indeed, the domain 
information is taken into account in the CRS-encoding 
scheme to some extent, but it is completely missed in the 
other six encoding schemes under investigation. There-
fore, to examine whether inclusion of the domain infor-
mation could help to improve the performance, we further 
extracted a set of conventional domain information features 
represented as DOM. The DOM features include the num-
bers of homo-domain and hetero-domain interactions, each 
of which includes three types: intra-chain, inter-chain and 
both. Then we incorporated these six DOM features to each 
encoding scheme and conducted another tenfold cross-vali-
dation to examine the potential effect of domain interaction 
information on the prediction performance. As expected, 
the DOM features can greatly improve the prediction per-
formance across almost all the encoding schemes except 

CRS (Table 2; Fig. 3b). Another important observation is 
that the performance of CRS was still robust and performed 
the best compared with other encoding schemes after incor-
porating the DOM features. In addition, possibly because 
CRS had contained the fine-grained domain information, 
the performance of CRS was not significantly improved 
further after integrating DOM features. These results sug-
gest that the substitutions occurring at both conserved sites, 
and the DDI interface provides fine-grained domain infor-
mation in comparison to the DOM features. Therefore, the 
CRS-encoding scheme is very powerful in the prediction of 
protein self-interactions.

Feature analysis

Recently, the DDI information was extensively used for 
PPI prediction. For instance, Shatnawi and Zaki developed 
a new method for structural domain identification. They 
predicted whether two proteins could interact or not, based 
on the identified interacting domain pairs in these two pro-
teins (Shatnawi and Zaki 2015). In contrast, we used the 
fine-grained domain information in our SIP prediction, in 
which the substitution of the key residues that play impor-
tant roles in protein self-interaction was captured by the 
CRS features. Here, we conducted a brief analysis of the 
self-interacting domain distribution and CRS features in 
our dataset.

In the human GS dataset, the percentage of the posi-
tive samples containing more than one self-interacting 

Table 1  Performance 
comparison of the CRS method 
and the other six encoding 
schemes based on tenfold cross-
validation on the human GS 
dataset

Tenfold cross-validation tests on the human GS dataset were used to conduct the performance comparison

Schemes Ac (%) Sp (%) Sn (%) MCC Fmeasure (%)

AC 61.47 ± 0.81 51.37 ± 9.04 71.57 ± 7.51 0.2373 ± 0.0082 64.87 ± 1.94

CT 62.91 ± 1.75 37.93 ± 10.04 87.89 ± 6.78 0.3045 ± 0.0150 70.28 ± 0.87

GAC 61.81 ± 0.68 55.41 ± 10.63 68.19 ± 10.74 0.2432 ± 0.0124 63.73 ± 4.10

LD 64.26 ± 1.03 46.28 ± 6.62 82.25 ± 4.86 0.3078 ± 0.0118 69.68 ± 0.89

MAC 61.29 ± 1.53 48.34 ± 11.32 74.24 ± 8.60 0.2385 ± 0.0177 65.59 ± 1.88

MBAC 60.45 ± 1.26 34.77 ± 7.62 86.13 ± 5.35 0.2466 ± 0.0135 68.50 ± 0.84

CRS 72.01 ± 0.87 61.73 ± 6.64 82.29 ± 5.23 0.4528 ± 0.0107 74.58 ± 0.92

Table 2  Performance 
comparison of the CRS method 
and the other six encoding 
schemes after incorporating the 
domain features (DOM)

Tenfold cross-validation tests on the human GS dataset were used to conduct the performance comparison

Schemes Ac (%) Sp (%) Sn (%) MCC Fmeasure (%)

AC + DOM 67.18 ± 0.63 53.17 ± 2.50 81.19 ± 2.08 0.3583 ± 0.0126 71.21 ± 0.63

CT + DOM 66.35 ± 0.93 47.36 ± 7.13 85.34 ± 5.61 0.3569 ± 0.0105 71.68 ± 1.05

GAC + DOM 66.93 ± 0.42 55.60 ± 4.26 78.25 ± 3.85 0.3487 ± 0.0078 70.26 ± 0.98

LD + DOM 66.63 ± 0.93 55.85 ± 8.86 77.42 ± 7.43 0.3453 ± 0.0104 69.78 ± 1.69

MAC + DOM 67.13 ± 0.73 57.71 ± 4.31 76.54 ± 3.34 0.3497 ± 0.0121 69.94 ± 0.79

MBAC + DOM 66.55 ± 0.92 62.11 ± 7.27 70.99 ± 7.94 0.3360 ± 0.0214 67.79 ± 2.89

CRS + DOM 72.50 ± 0.53 62.03 ± 5.28 82.97 ± 5.33 0.4628 ± 0.0136 75.05 ± 1.38
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domain is 90.07 %, which is significantly higher than that 
of the negative samples (p value <2.2 × 1016, Wilcoxon 
rank test). Similar phenomenon was observed in the yeast 
dataset. From this perspective, the domain features can be 
exploited as useful discriminative features for distinguish-
ing from proteins that cannot self-interact. All the DDI 
annotations in the 3did database were collected from 3D 
protein structures; the coverage of DDI information may 
not be complete since the increase of 3D structure data can-
not keep pace with the sequence data. Therefore, a minor-
ity of orphan proteins without domain information cannot 
be handled appropriately by using domain features. The 
distribution of self-interacting domains in the human and 
yeast GS datasets is provided in Fig. 4a. It can be seen that 
both positive and negative samples contained a variety of 
self-interacting domains, which might be distinct between 
different species. It might further imply that only domain 
features cannot fully capture the distinctive characteristics 
for all kinds of SIPs, and thus, it is difficult to achieve satis-
factory performance for cross-species prediction, given that 
different species might have evolved to use different types 
of self-interacting domains.

Using Wilcoxon rank tests, we investigated all statisti-
cally significant features between the positive and negative 
samples in human GS dataset. Figure 4b displays the mean 
values of top 25 features, all of which were encoded by the 
CRS method. This also rationalized why CRS achieved a 
better performance for protein self-interaction prediction. 
Besides, all of these 25 features represent features that 
describe the substitution at the DDI interface, rather than 

the substitution at conserved positions inferred from the 
multiple sequence alignments of domains. A number of 
these features represent no substitution, such as ‘eE’, ‘lL’ 
and ‘kK’, while the others are the substitutions between 
residues with similar physicochemical properties, such as 
‘eD’, ‘iL’ and ‘eQ’.

Incremental feature selection

Despite achieving a better predictive performance com-
pared with other encoding schemes, CRS does have the fol-
lowing limitation. In a few cases, a possible SIP does not 
contain any self-interacting domain. Since the CRS method 
depends on the self-interacting domain information, it 
has no capability to accurately predict the SIPs without 
self-interacting domain information. In order to address 
this issue and improve the performance of the predictive 
model, we integrated the CRS with other six encodings 
together and ranked them by the mRMR algorithm on the 
whole human GS training set. Then features were stepwise 
selected from top to bottom in the ranked feature set. For 
each incremental feature selection, the prediction model 
was constructed on the human GS training set and subse-
quently evaluated on the human-GS-independent test set 
and yeast GS dataset (Fig. 5).

As shown in Fig. 5, the maximum MCC in human and 
yeast dataset were 0.3836 and 0.2585 when the top 292 and 
275 features in mRMR rank were selected, respectively. 
Here, the top 292 features (maximum MCC value in human 
GS dataset) were chosen to train our final prediction model 

Fig. 4  Venn diagram of the distribution of self-interacting domain 
in the human and yeast GS datasets (a) and radar diagram of the top 
25 significant different features compared between positive and nega-
tive samples in the human GS dataset (b). In panel a, I and II denote 
the positive and negative samples in the human GS dataset, respec-
tively; III and IV denote the positive and negative samples in the yeast 

GS dataset, respectively. I, II, III and IV are colored by blue, green, 
violet and yellow, respectively. In panel b, since all of these features 
come from the CRS method, the feature names were represented as 
two characters XY, meaning the substitution from HMM consensus 
sequence to sample sequence. If the first character is lowercase, it 
means that it was not a mostly conserved site
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in the human GS training dataset. Among these selected 
features, the numbers of features from AC, MAC, GAC, 
MBAC, CT, LD and CRS encoding schemes were 7, 2, 2, 
62, 13, 67 and 139, respectively.

Comparison with other methods

To further benchmark our method, we also compared the 
performance of our final model (named SPAR) with one 
existing SIP predictor SLIPPER and three PPI predictors 
DXECPPI (Du et al. 2014), PPIevo (Zahiri et al. 2013) 
and LocFuse (Zahiri et al. 2014) based on the human- and 
yeast-GS-independent sets. When compared with SLIP-
PER, we directly enquired the results on its web server by 
the gene name of each sample. Although the performance 
of SLIPPER was superior to SPAR (Table 3; Fig. 6), SLIP-
PER also contained some limitations. Firstly, it cannot 
predict a protein based on its sequence, but only allows 
for querying the predicted results, which had been stored 
in their database, by gene names. Secondly, it integrated a 

great deal of known knowledge, such as GO terms, PINs, 
drug targets and enzymes. Particularly, the degree of a pro-
tein in the PINs made a great contribution for SIP predic-
tion. However, for an unknown or artificial protein in real 
applications, all of the information was very difficult to be 
accessible directly. Therefore, our SPAR was necessary for 
the improved SIP prediction as long as its protein sequence 
was known.

To compare with DXECPPI, the protein sequences in the 
human- and yeast-independent sets were submitted to its 
web server to perform the prediction. As a result, we found 
that the comprehensive performance of SPAR was better 
than DXECPPI (Table 3; Fig. 6), although the MCC value 
of our approach was lower than that of DXECPPI on the 
yeast-independent dataset (Table 3). Since the two interact-
ing protein partners were identical, the traditional PPI pre-
dictor which utilized correlation information between two 
proteins, such as coevolution, co-expression and co-local-
ization, could not work effectively for the SIP prediction. 
Therefore, our method can be an essential complement 
for the PPI prediction. In addition, the results of the pre-
diction on the yeast GS dataset proved that our SPAR has 
a prominent scalability when applied to cross-species SIP 
prediction.

Zahiri et al. have recently developed two sequence-
based PPI predictors [i.e. PPIevo (Zahiri et al. 2013) and 
LocFuse (Zahiri et al. 2014)]. They proved that the posi-
tion-specific scoring matrix (PSSM) generated by PSI-
BLAST (Altschul et al. 1997) could be converted into 
effective features for PPI prediction. In PPIevo, a 420-D 
vector for each protein sequence was constructed by 
extracting feature from PSSM. After that, they updated 
the PPIevo encoding scheme by reducing the dimension-
ality, and further proposed a “protein sequence and con-
sensus sequence hybridization (SCH)” encoding scheme 
in LocFuse, which resulted in a 648-D feature vector in 
total. To compare our method with the feature vectors 
constructed by PPIevo and LocFuse, we first extracted the 

Fig. 5  MCC values obtained by a stepwise incremental feature selec-
tion. The maximum MCC values on the human and yeast datasets 
were 0.3836 and 0.2585, when the top 292 and 275 features were 
selected by mRMR, respectively

Table 3  Performance comparison of the models trained by CRS features with mRMR-selected features (SPAR), two PSSM-based features 
(PPIevo and LocFuse) and two other predictors (SLIPPER, DXECPPI) evaluated on both human and yeast independent sets

The ratio of positive to negative samples in the human- and yeast-independent sets was approximately 1:11 and 1:8, respectively

Scheme Human Yeast

Ac (%) Sp (%) Sn (%) MCC Fmeasure (%) Ac (%) Sp (%) Sn (%) MCC Fmeasure (%)

SLIPPER 91.10 95.06 47.26 0.4197 46.82 71.90 72.18 69.72 0.2842 36.16

DXECPPI 30.90 25.83 87.08 0.0825 17.28 87.46 94.93 29.44 0.2825 34.89

PPIevo 78.04 25.82 87.83 0.2082 27.73 66.28 87.46 60.14 0.1801 28.92

LocFuse 80.66 80.50 50.83 0.2026 27.65 66.66 68.10 55.49 0.1577 27.53

CRS 91.54 96.72 34.17 0.3633 36.83 72.69 74.37 59.58 0.2368 33.05

SPAR 92.09 97.40 33.33 0.3836 41.13 76.96 80.02 53.24 0.2484 34.54
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feature vectors from the PSSM for each sample by running 
these two feature construction programs downloaded from 
http://lbb.ut.ac.ir/Download/LBBsoft/. Then, we retrained 
our RF models by using the human training dataset based 
on these two encoding schemes. In general, the models 
based on these two encoding schemes also achieved a 
good performance on both human- and yeast-independent 
datasets, although they were not as effective as the features 
generated by the CRS method (Table 3; Fig. 6). In terms 
of the future method development, these two encoding 
schemes may serve as valuable features to further improve 
our SIP predictor.

Web server implementation

To facilitate high-throughput prediction of SIPs, a web 
server of SPAR has been made freely available at http://
systbio.cau.edu.cn/zzdlab/spar/ to the research commu-
nity. At the input webpage, users can submit their protein 
by pasting a FASTA-formatted sequence into the text box. 
After pressing the submit button, the server will automati-
cally predict whether the query protein can self-interact 
based on the calculated probability score, which will be 
shown in the output page instantaneously. Typically, it 
takes a few seconds for the server to process a task. More-
over, the server provides the details about self-interacting 
domain information which is generated by integrating 
HMMER3 alignment results and DDI annotations in 3did 

database. Besides, users will receive a job ID, which can be 
saved for the future query. All the prediction tasks will be 
stored for 1 month.

Conclusion

In this study, we have developed a new computational 
method named SPAR for predicting SIPs based on 
sequence information. By taking advantage of the DDI 
information in the 3did database, we proposed an improved 
feature-encoding scheme named CRS and constructed 
models based on the RF algorithm. We evaluated the per-
formance of this method on the human SIP dataset and 
also compared with other popular feature-encoding meth-
ods commonly used for PPI prediction, such as AC, CT, 
LD, MAC, GAC and MBMAC. The empirical results on 
the benchmark dataset showed that the domain informa-
tion made a significant contribution to the performance 
improvement of CRS. Moreover, we found that the substi-
tutions that occur at conserved sites and the DDI interface 
might play a critical role in determining whether these self-
interacting domains can result in protein self-interactions. 
Finally, an optimized model was constructed by integrating 
all the important features ranked by the mRMR algorithm. 
The performance of the final model achieved an accuracy 
of 92.09 and 76.96 % on the human- and yeast-independent 
datasets, respectively. We anticipate that SPAR can serve as 

Fig. 6  ROC curves of CRS, SPAR, the PPIevo-encoding, the Loc-
Fuse-encoding and two other predictors (SLIPPER and DXEDPPI) 
based on the results of independent test. The performance was based 

on (a) the human-GS-independent test set and (b) the yeast GS data-
set, respectively. Parameters in brackets are the AUC values of each 
prediction model
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an important tool to facilitate the high-throughput predic-
tion analysis of protein self-interactions.
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