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Many plant pathogens secrete virulence effectors into host cells to target important
proteins in host cellular network. However, the dynamic interactions between effectors
and host cellular network have not been fully understood. Here, an integrative network
analysis was conducted by combining Arabidopsis thaliana protein–protein interaction
network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis
effectors, and gene expression profiles in the immune response. In particular, we
focused on the characteristic network topology of the effector targets and differentially
expressed genes (DEGs). We found that effectors tended to manipulate key network
positions with higher betweenness centrality. The effector targets, especially those that
are common targets of an individual effector, tended to be clustered together in the
network. Moreover, the distances between the effector targets and DEGs increased
over time during infection. In line with this observation, pathogen-susceptible mutants
tended to have more DEGs surrounding the effector targets compared with resistant
mutants. Our results suggest a common plant–pathogen interaction pattern at the
cellular network level, where pathogens employ potent local impact mode to interfere
with key positions in the host network, and plant organizes an in-depth defense by
sequentially activating genes distal to the effector targets.

Keywords: effector, network analysis, plant immune response, plant–pathogen interaction, systems biology, time
series gene expression data

INTRODUCTION

Plants are under constant threat of a wide spectrum of pathogens including bacteria, oomycetes
and fungi in the wild (Tsuda and Somssich, 2015). As a response, plants have evolved complicated
immune systems against pathogens. Pathogen-associated molecular pattern (PAMP)-triggered
immunity (PTI) and effector-triggered immunity (ETI) are two major phases of plant immunity
(Thomma et al., 2011). Primarily, plants sense pathogens’ conserved PAMPs (e.g., flagellin) to
trigger PTI. To subvert PTI, pathogens secrete a battery of effector proteins, which usually carry
various enzymatic activities or enzyme inhibitor activities, to interfere with plant immunity (Dodds
and Rathjen, 2010). As a counteraction, potent ETI can be activated on the recognition of these
effectors by nucleotide binding-leucine rich repeat (NB-LRR) proteins, either directly (i.e., by
interacting with the effectors directly) or indirectly (i.e., by interacting with the proteins attacked
by the effectors) (Ye and Ting, 2008; Li and Zhang, 2016).
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To investigate the mechanisms of plant–pathogen
interactions, several model pathogens have been exploited,
among which Pseudomonas syringae (Psy) and Hyaloperonospora
arabidopsidis (Hpa) are two representative model pathogens
that infect Arabidopsis. Psy is a bacterium which causes severe
diseases in a wide range of plant species, and it is also the first
model pathogen used for Arabidopsis (Katagiri et al., 2002).
This pathogen undertakes an exceptional hemibiotrophic
lifestyle during infection. In the early stage, Psy absorbs
nutrients from living host cells for rapid multiplication.
But in the late stage, it massively kills host cells, resulting
in extensive necrosis of infected tissues (Lee and Rose,
2010; Xin and He, 2013). Hpa is an oomycete pathogen,
also an agent of the downy mildew disease. As an obligate
biotrophic pathogen, it keeps host cells alive for its growth and
multiplication during all stages of infection (Coates and Beynon,
2010).

Many immune-related pathways, e.g., the salicylic acid and
jasmonic acid/ethylene signaling pathways have been discovered
through genetic or biochemical investigations of individual
genes. Nevertheless, these investigations also indicate that a
collection of interconnected pathways rather than individually
unrelated genes are essential for plant resistance to pathogens
(Wang L. et al., 2011; Ralhan et al., 2012). Therefore, it
is necessary to understand plant–pathogen interactions from
a systematic perspective (Elena and Rodrigo, 2012; Naseem
et al., 2012; Weßling et al., 2014; Windram and Denby, 2015).
A prominent example is the mapping of the protein–protein
interaction (PPI) network between pathogen’s effectors and
host proteins. In 2011, Mukhtar et al. (2011) constructed a
plant–pathogen immune network (version 1; PPIN-1), which
contains 3,148 interactions among 83 pathogen effectors from
the aforementioned model pathogens Psy and Hpa, 170 immune
proteins and 673 other Arabidopsis proteins. In this network,
the NB-LRR immune receptors for ETI usually do not directly
interact with the effectors, but tend to interact with host
proteins targeted by the effectors (i.e., the effector targets). This
observation supports the guard hypothesis in which immune
proteins monitor effector targets to trigger ETI. This network
also provides novel hypothesis and explanation regarding to
the plant–pathogen interactions. For example, by analyzing real
and random effector targets in PPIN-1, they found the effectors
from Psy and Hpa are more likely to share targets compared
with random, implying that these two diverse pathogens deploy
effectors to a converged set of targets. They also observed higher
degree (or connectivity) of real effector targets than random ones,
indicating that the effectors tend to manipulate important host
proteins in the network. This observation partly explains how
the limited number of effectors could efficiently disrupt host
immunity.

Although lots of progress has been made, there are still
many questions that need to be further studied. What roles
do the effector targets play in the network structure and
organization? How are the targets of the same (or different)
effector(s) distributed in the network? How does the network
change dynamically in response to pathogen infection? Is there
any underlying relationship between such dynamic changes

and the effector target distribution? To this end, analyzing
PPI network alone is apparently insufficient, and integrative
network analyses are the excellent alternative choices. In fact,
integrative network analyses have been successfully applied
to the researches of host–pathogen interactions. For example,
Gulbahce et al. (2012) focused on Epstein-Barr virus and human
papillomavirus type 16, which are associated with Burkitt’s
lymphoma and cervical cancer, respectively. They performed
integrative network analysis to examine relative location between
viral targets and disease susceptibility genes on the human
interactome. The result shows that disease susceptibility genes
are located in the network vicinity of viral targets. Recently,
we combined machine learning method, modular network
analysis and various types of data to investigate the shared
and distinct network organization in Arabidopsis PTI and ETI
(Dong et al., 2015). We found that the subnetwork shared by
PTI and ETI is more likely to be targeted by pathogens. The
previous hypothesis that the modular structures in ETI are
relatively independent of each other for the robustness of ETI
immunity, which was initially proposed based on the genetic
associations between key immunity proteins (Tsuda et al., 2009),
was also independently validated and extended to the interactome
scale.

In this study, a comprehensive Arabidopsis PPI network
was re-constructed and combined with known Arabidopsis-Psy
and -Hpa PPIs. Firstly, we analyzed the topological features
of the effector targets in the network, especially the targets
interacting with the same effectors. Further, we integrated time
series gene expression data to describe the dynamic network
change during infection. Finally, a novel association between the
dynamic network change and the effector target distribution was
suggested, which also seemed to be predictive for the phenotypic
outcomes (i.e., pathogen-susceptible or pathogen-resistant) of
mutant plants.

RESULTS

Assembly of a Comprehensive
Arabidopsis PPI Network
We assembled a comprehensive Arabidopsis PPI network by
merging experimental PPIs from different resources (BioGrid,
IntAct, and TAIR databases, see Materials and Methods for
details). The resulting network contained 23,797 PPIs among
8,519 proteins. Meanwhile, we collected Arabidopsis-Psy and -
Hpa PPIs from a previous publication (Mukhtar et al., 2011) and
mapped them onto the comprehensive Arabidopsis PPI network,
in which the proteins interacting with the effectors were tagged as
the effector targets. As a result, 52 Arabidopsis proteins (hereafter
referred to as Psy targets) interacting with 27 Psy effectors and
109 Arabidopsis proteins (hereafter referred to as Hpa targets)
interacting with 52 Hpa effectors were obtained, in which 17
Arabidopsis proteins were targeted by the effectors from both
pathogens. Generally, each of the Psy and Hpa targets interacted
with only one Psy effector and one Hpa effector, respectively (the
median values are shown). On the contrary, each Psy or Hpa
effector interacted with two Arabidopsis proteins (the median
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values are shown), which may be one of factors that enable
pathogen infection through a handful of effectors (Li et al.,
2012).

Pathogens Employ the Local Impact
Mode to Disrupt Arabidopsis Cellular
Network
One of the questions we would like to answer is what strategies
pathogens employ to infect Arabidopsis. To this end, for each of
Psy targets, we calculated the average distances from it to the
other Psy targets and to the proteins not targeted by the Psy
effectors (hereafter referred to as non-Psy targets; the non-Hpa
targets were defined analogously). By comparison, we found
that the average distances from Psy targets to Psy targets were
significantly shorter than those from Psy targets to non-Psy
targets (one-tailed Wilcoxon’s test, p-value = 1.18 × 10−10;
Figure 1A), which indicates that Psy targets tend to converge
onto local regions, rather than scatter across the whole
network. Similarly, Hpa targets were also significantly closer to
each other than non-Hpa targets (one-tailed Wilcoxon’s test,
p-value = 3.32 × 10−23; Figure 1B). In other words, the Hpa
effectors also tend to damage local regions in the comprehensive
Arabidopsis PPI network (Supplementary Figure S1a). To be
more straightforward, we identified 47 network modules by using
the MCODE tool (Bader and Hogue, 2003), and found that
the effector targets significantly clustered in five out of the 47
modules. The effector target distribution and the brief function
annotation of these five modules are shown in Supplementary
Figure S1b. In all, the results imply that the effectors tend to attack
local regions in the host PPI network.

As described above, each effector can interact with multiple
effector targets. We speculated that the effector targets interacting
with the same effectors should also be located close to each
other to confer potent local impact. To test this hypothesis, the
distances between the targets of the same effectors and those
between the targets of the different effectors were compared.
Indeed, the distances between the targets of the same effectors
were shorter, no matter for Psy targets (one-tailed Wilcoxon’s test,
p-value= 7.92× 10−4; Figure 1C) or for Hpa targets (one-tailed
Wilcoxon’s test, p-value= 6.26× 10−9; Figure 1D). It seems that
each effector primarily disrupts a closely connected local region
in the comprehensive Arabidopsis PPI network in order to quickly
translocate the effector to all of its targets, resulting in an efficient
local impact mode for interfering with the host cellular network.

We noticed that the above conclusion seems to conflict
with previous result of Weßling et al. (2014). They constructed
random networks by the degree-preserving rewiring method
(Rao et al., 1996), and found that there were less direct
interactions between effector targets in the real PPI network,
in comparison with random networks (Weßling et al., 2014).
Therefore, they concluded that effector targets were significantly
dispersed than random expectation. To clarify this point, we also
constructed 1,000 random networks based on the comprehensive
Arabidopsis PPI network by using the same method. Indeed,
the distances between different effector targets were significantly
higher, on average, in the real network compared with those

in the random networks (Supplementary Figures S2a–d). On
the other hand, however, the distances between the effectors
targets and non-targets were also significantly higher than
random (Supplementary Figures S2e–h). In other words, the
random network rewiring method reduced not only the target
to target distances, but also the target to non-target distances.
Therefore, the comparison of the target to target distances
alone (Supplementary Figures S2a–d) would fail to accurately
capture the relatedness between the target to target distances
and target to non-target distances, as the changes in the
target to non-target distances after random network rewiring
(Supplementary Figures S2e–h) were omitted.

An alternative experiment to validate our observations is
to check if the difference between target to target distances
and target to non-target distances could be replicated in the
random networks. More specifically, in each random network,
we compared the distances between different effector targets
and those between the effector targets and non-targets by one-
tailed Wilcoxon’s test. If most random networks showed the
p-values smaller than the p-values obtained from the real PPI
network analysis, our observations could be randomly expected.
Results demonstrated that most random networks did not show
smaller p-values compared with the real network analysis: for
Psy, 101 out of 1,000 random networks showed smaller p-values
(Supplementary Figure S3a); while for Hpa, only three out of
1,000 random networks showed smaller p-values (Supplementary
Figure S3b). Therefore, the observed smaller distances between
different effector targets are not likely random. We further
validated the observed smaller distances between the targets of
the same effectors (Figures 1C,D) by the same experiment. The
results indicate that this observation is also unlikely random.
Only two out of 1,000 random networks showed smaller p-values
for Psy (Supplementary Figure S3c), and none showed smaller
p-values for Hpa (Supplementary Figure S3d).

In addition, the overall network topology would also influence
our observations. To test this possibility, we introduced another
frequently used Arabidopsis PPI network, termed AI-1MAIN
(Arabidopsis Interactome Mapping Consortium, 2011; Mukhtar
et al., 2011; Weßling et al., 2014). This network was established
based on the PPIs identified from one large scale yeast two-hybrid
screen. Therfore, much less PPIs and proteins were included in
AI-1MAIN (5,664 PPIs among 2,661 proteins), compared with
our comprehensive Arabidopsis PPI network (23,797 PPIs among
8,518 proteins). Nevertheless, 47 (90.38%) of Psy targets as well
as 107 (98.17%) of Hpa targets were covered by AI-1MAIN,
enabling this network as a choice for analyzing the influence of
overall network topology. In this network, the distances between
different effector targets, in comparison with those between the
effector targets and non-targets, were significantly shorter (one-
tailed Wilcoxon’s test, p-value = 5.59 × 10−14 for Psy and
p-value = 1.58 × 10−31 for Hpa; Supplementary Figures S4a,b).
Moreover, the targets of the same effectors were also significantly
closer than those of the different effectors (one-tailed Wilcoxon’s
test, p-value = 9.76 × 10−4 for Psy and p-value = 2.57 × 10−8

for Hpa; Supplementary Figures S4c,d). These results suggest
the robustness of our observations to the alteration of overall
network topology.
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FIGURE 1 | The distributions of average distances between different types of proteins. The distributions of average distances (A) from each of Psy targets to the rest
of Psy targets and to non-Psy targets; (B) from each of Hpa targets to the rest of Hpa targets and to non-Hpa targets; (C) from each of Psy targets to the effector
targets interacting with the same Psy effectors and to those interacting with different Psy effectors; (D) from each of Hpa targets to the effector targets interacting
with the same Hpa effectors and to those interacting with different Hpa effectors in the comprehensive Arabidopsis PPI network are plotted. The significance of the
difference in distance distributions is estimated using one-tailed Wilcoxon’s test.

Finally, in addition to Psy and Hpa targets, a recent dataset of
Golovinomyces orontii (Gor) targets is available (Weßling et al.,
2014). Gor is an obligate biotrophic fungus and the pathogenic
agent of powdery mildew on Arabidopsis. We validated our
observations by using the Gor targets. Fifty Arabidopsis proteins
(i.e., Gor targets) in the comprehensive Arabidopsis PPI
network were targeted by 45 Gor effectors. Consistent with
the results for Psy and Hpa targets, the Gor targets were also
closer to each other in the comprehensive Arabidopsis PPI
network (one-tailed Wilcoxon’s test, p-value = 8.99 × 10−13;
Supplementary Figure S5a), so were the targets of the same
Gor effectors (one-tailed Wilcoxon’s test, p-value = 0.013;
Supplementary Figure S5b). Therefore, the effectors from
different pathogens are likely to adopt similar local impact mode
in order to efficiently attack host network.

Key Positions Important for the Diffusion
of Information throughout the Network
Tend to be Targeted
How do local perturbations resulting from effector attacks
propagate throughout the network, and finally cause the global
change of the whole network? Intuitively, among the limited
numbers of the effector targets, the proteins occupying the key
positions in the network should be the first choices. Note that
there are two types of key positions in the network. One is
important for local network organization, characterized by higher
degree. The other is important for global diffusion of information
throughout the network, featured by higher betweenness
centrality. It has been reported that host proteins targeted by
pathogen proteins display higher degree (Li et al., 2012; Weßling
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et al., 2014; Halehalli and Nagarajaram, 2015; Memisevic et al.,
2015), including those host proteins targeted by the Psy or Hpa
effectors (Mukhtar et al., 2011). We also validated this tendency
in our comprehensive PPI network (Supplementary Figure S6),
indicating that the effector targets are indeed important for
local network organization. However, such proteins are not
always indispensable for global diffusion of information. As direct
quantification, the betweenness centrality values of the effector
targets and non-targets were compared. Figure 2 depicts the
cumulative distributions of the betweenness centrality of Psy
targets and non-Psy targets, as well as those of Hpa targets and
non-Hpa targets. For non-Psy or non-Hpa targets, the fraction
of proteins decreased quickly as the betweenness centrality
increases (Figures 2A,B), indicating only a few non-targets have
high betweenness centrality. By contrast, the effector targets
showed a significant shift toward higher betweenness centrality
(one-tailed Wilcoxon’s test, p-value = 2.62 × 10−18 for Psy
and p-value = 3.53 × 10−37 for Hpa). A protein with high
betweenness centrality signifies that most information flows
between the proteins in the network should pass this protein,
and pathogens could disturb such proteins to paralyze global
information diffusion of the host network.

Due to the specific structure of biological networks, a protein
with higher degree naturally tends to have higher betweenness
centrality. Indeed, the degree and betweenness centrality are
highly correlated in the comprehensive Arabidopsis PPI network
(Figure 2C; Spearman’s rank correlation coefficient = 0.889).
To test the influence of degree or network topology on the
above results, additional analyses were performed from the
following three aspects. (a) We noticed that among proteins
having higher degree (hubs), those targeted by effectors showed
generally higher betweenness centrality (Figure 2C). We defined
the proteins whose degrees were more than 5, 10, 15, or
20 as hubs in the comprehensive Arabidopsis PPI network,
and re-performed the same analyses by considering the hubs

only. Despite of different definitions of hubs, hubs targeted
by effectors had higher betweenness centrality than other hubs
(Supplementary Table S1). (b) We generated 1,000 random
networks by the aforementioned degree-preserving rewiring
method. For each network, we compared the betweenness
centrality of the effector targets and non-targets, and quantified
the significance of the difference by one-tailed Wilcoxon’s test.
If most of random networks showed more significant difference
(i.e., smaller p-values) than real PPI network, namely the
comprehensive Arabidopsis PPI network, the result could be
randomly expected. Out of 1,000 random networks, 325 and
four showed smaller p-values, for Psy and Hpa, respectively
(Supplementary Figure S7). It is noteworthy that the random
networks were constructed by the degree-preserving rewiring
method where the degree of each protein was fully kept, so did
the strong correlation between degree and betweenness centrality
(average Spearman’s rank correlation coefficient= 0.944). Under
this configuration, it should be hard to alter one protein’s
betweenness centrality when its degree remains unchanged.
Nevertheless, less than one third of random networks could
replicate the result from the real network (Supplementary
Figure S7), indicating that the higher betweenness centrality
of effector targets, though strongly influenced by degree, is
not likely random. (c) We examined the effector targets and
non-targets’ betweenness centrality in AI-1MAIN. Similar to the
result from the comprehensive Arabidopsis PPI network, the
significantly higher betweenness centrality of the effector targets
was observed (one-tailed Wilcoxon’s test, p-value= 1.11× 10−15

for Psy and p-value = 4.54 × 10−34 for Hpa; Supplementary
Figure S8). These results together indicate that, though the
betweenness centrality is strongly influenced by degree, the
effector targets’ higher betweenness centrality is not likely to
simply result from their higher degree, but could be considered
as another aspect of the topological feature of the effector targets.
In addition, by evaluating the difference in the betweenness

FIGURE 2 | The distributions of betweenness centrality and degree for different types of proteins. (A,B) The cumulative distributions of the betweenness centrality of
Psy targets, non-Psy targets, Hpa targets and non-Hpa targets in the comprehensive Arabidopsis PPI network are plotted after removing an outlier. The significance
of the difference in betweenness centrality distributions is estimated using one-tailed Wilcoxon’s test. (C) The nodes represent all the proteins except for an outlier in
the comprehensive Arabidopsis PPI network, of which red nodes represent both Psy targets and Hpa targets. The blue dashed line implies the tendency of
betweenness centrality changing with degree, as estimated by the LOWESS smoothing method in R language.
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centrality distributions of the Gor targets and non-Gor targets in
the comprehensive Arabidopsis PPI network, we found the Gor
targets also had significantly higher betweenness centrality (one-
tailed Wilcoxon’s test, p-value = 1.71 × 10−20; Supplementary
Figure S9), suggesting the potential generalizability of this
finding.

To further simulate the impact of effector attack on the
diffusion of information in the comprehensive Arabidopsis PPI
network, we first employed the time series gene expression
datasets of Arabidopsis inoculated with Psy (GSE5685) or
Hpa (GSE22274) to assess the dynamic network change
during infection. The first dataset (GSE5685) produced by the
AtGenExpress project contains five different time points: 4, 8,
16, 24, and 48 h post-inoculation (hpi). The second dataset
(GSE22274) was generated by Wang W. et al. (2011) and
detected at four different time points: 0.5, 2, 4, and 6 days
post-inoculation (dpi). The up-regulated DEGs (activated genes)
during Psy or Hpa infection were identified at each time
point and mapped onto the comprehensive Arabidopsis PPI
network (Supplementary Table S2 and Figure S10). In total,
465 up-regulated DEGs (hereafter referred to as Psy DEGs)
and 614 up-regulated DEGs (hereafter referred to as Hpa
DEGs) in response to Psy and Hpa infections were obtained
at different time points, respectively. We computed the average
distances between DEGs of any two adjacent time points in
the comprehensive Arabidopsis PPI network for Psy and Hpa as
the measurement of baseline efficiency of network information
diffusion (Table 1). Subsequently, Psy or Hpa targets were
removed from the comprehensive Arabidopsis PPI network.
Here, we assumed that the DEGs were not changed with the
effector target removal because it was very hard to know what
DEGs were actually changed. With this assumption, we instead
focused on the changes of the relationship between DEGs.
More specifically, if the average distances between DEGs of two
adjacent time points become higher after the removal of the
effector targets, the declining efficiency of network information
diffusion would be assumed. Indeed, the removal of either Psy
or Hpa targets could increase the distances between DEGs of
adjacent time points (Table 1), thus likely disturbing the diffusion
of information.

Similarly, we mapped the up-regulated DEGs during Psy or
Hpa infection onto AI-1MAIN (Supplementary Table S3) and
found that the results remain unchanged, i.e., after removing the
effector targets, the distances between DEGs of adjacent time
points also increase (Supplementary Table S4). We also tried
to perform the same analyses for Gor infection. Unfortunately,
however, there were not sufficient DEGs identified from the
time series gene expression dataset with respect to Gor infection
(GSE13793). For example, only one DEG could be identified at
3 dpi. Therefore, we did not perform subsequent DEG-centered
analyses for Gor.

Increasing Distances from DEGs to the
Effector Targets during Infection
In the above analyses, we have shown that the distribution of
the effector targets in the network is non-random. Intuitively,

the Arabidopsis network should have specific changes in response
to such non-random attack pattern. We first examined the
expression change of Psy and Hpa targets during infection.
Only four (7.69%) out of Psy targets and six (5.50%) out of
Hpa targets were up-regulated during infection, indicating that
the effector targets themselves are not likely to be activated
during infection. Nevertheless, we found that most of DEGs
were located in the vicinity of the effector targets in the
network (Supplementary Figure S11). For 436 (93.76%) out of
465 Psy DEGs, their distances to Psy targets were no more
than three (Supplementary Figure S11a). Likewise, for 587
(95.60%) out of 614 Hpa DEGs, their distances to Hpa targets
were no more than three (Supplementary Figure S11b). This
result indicates that Arabidopsis mostly activates the genes in
the vicinity of the effector targets in the network for defense
response.

On the other hand, Arabidopsis response to pathogen
invasion is a dynamic process, and genes with specific functions
would be activated at specific stages of the infection (Lewis
et al., 2015). To explore dynamic network changes, at each
time point during Psy or Hpa infection, we computed the
average distances between DEGs and the effector targets (see
Materials and Methods). Interestingly, both Psy and Hpa DEGs
followed the same trend: DEGs at the first time point (4
hpi for Psy and 0.5 dpi for Hpa) were located closest to
the effector targets; and the average distances between DEGs
and the effector targets increased over time (Figure 3). To
evaluate the significance of this result, for DEGs at each time
point, we randomly picked equal number of proteins from
the comprehensive Arabidopsis PPI network and calculated
their distances to the effector targets. Such random trial was
repeated 1,000 times. Subsequently, we counted the number of
trials where consistently increasing distances from randomly
picked proteins to the effector targets could be observed. Only
22 and 36 out of 1,000 random trials showed consistently
increasing distances over all time points, for Psy and Hpa,
respectively (Supplementary Figure S12). We also tried to
relax the restriction by counting the number of trials where
consistently increasing distances over the first four, first three
or first two time points for Psy. As expected, consistently
increasing distances over at least three time points were
unlikely observed in random trials (Supplementary Figure S12a).
Similarly, we could observe only 139 out of 1,000 random
trials where the distances increased over the first three time
points (Supplementary Figure S12b). These results indicate that
consistently increasing distances to the effector targets could
imply a non-random regulation of gene expression in response
to pathogen infection.

We checked the robustness of this observation to the changes
of network topology. Firstly, a larger Arabidopsis network, which
was constructed by combining the confirmed protein-DNA
interactions from the AGRIS database (Yilmaz et al., 2011), and
known Arabidopsis PPIs were employed. The resulting network
consists of 23,797 PPIs and 4,217 protein-DNA interactions.
Similar to the results obtained from the comprehensive
Arabidopsis PPI network, the average distances between DEGs
and the effector targets increased over time in this larger network
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TABLE 1 | The comparison of the average distances between DEGs of two adjacent time points before and after removing the effector targets from the comprehensive
Arabidopsis PPI network.

Psy infection Hpa infection

Timea 4 hpi- > 8 hpi 8 hpi- > 16 hpi 26 hpi- > 24 hpi 24 hpi- > 48 hpi 0.5 dpi- > 2 dpi 2 dpi- > 4 dpi 4 dpi- > 6 dpi

+ Targetsb 2.467 2.052 1.114 1.319 1.692 1.518 1.096

− Targetsc 2.717 2.273 1.460 1.472 1.949 1.967 1.272

aTwo adjacent time points during Psy or Hpa infection. bThe average distances between DEGs of two adjacent time points when effector targets are included in the
comprehensive Arabidopsis PPI network. cThe average distances between DEGs of two adjacent time points after removing Psy or Hpa targets from the comprehensive
Arabidopsis PPI network.

FIGURE 3 | The changes of the average distances from DEGs at different time points to the effector targets. The average distances from DEGs at each time points
during (A) Psy or (B) Hpa infection to Psy or Hpa targets in the comprehensive Arabidopsis PPI network are plotted. Error bars represent the standard errors of the
average distances.

(Supplementary Figure S13). Secondly, we also validated the
observation by randomly removing 10, 20, 30, and 40% PPIs,
or 10, 20, 30, and 40% effector targets from the comprehensive
Arabidopsis PPI network. Again, the generally similar trends were
observed after the removal of PPIs (Supplementary Figure S14)
or effector targets (Supplementary Figure S15). We also noticed
that the increasing trends at later time points for Psy could
be slightly disrupted with the PPI removal (Supplementary
Figure S14). Nevertheless, the general increasing trend for
the distances from DEGs to the effector targets, especially at
the early time points, remained stable. Finally, we performed
the analysis in AI-1MAIN. For Hpa, consistently increasing
distances were validated (Supplementary Figure S16b). But for
Psy, the increasing distances were observed only at the early
time points, and the increasing trend was disrupted at the
later time points (Supplementary Figure S16a), mimicking the
results after the PPI removal. In fact, about 76.2% of PPIs in
the comprehensive Arabidopsis PPI network were removed in
AI-1MAIN. Therefore, this disruption of the increasing trend
was plausibly due to the limited size of AI-1MAIN, since many
connections between DEGs and the effector targets were not
included in AI-1MAIN.

In summary, a specific dynamic trend of DEGs in relation
to the effector targets has been observed, in which the DEGs
seemed to step away from the effector targets during infection.
One may notice that only up-regulated DEGs were considered
here. This is because most DEGs were up-regulated (activated)
during infection. Indeed, analyzing both up-regulated and down-
regulated DEGs would result in the trends highly similar to those
observed for up-regulated DEGs (Supplementary Figure S17a),
even though down-regulated DEGs showed somewhat different
trends (Supplementary Figure S17b).

Pathogen-Susceptible Mutants Tend to
have More DEGs near Effector Targets
than Pathogen-Resistant Ones
We speculated that the aforementioned dynamic network
pattern, where DEGs exhibit increasing distances to effector
targets, has its merits in the immune response. That is to say,
DEGs should not stay in the region adjacent to the effector
targets, otherwise the plant could be susceptible to infection. To
test this possibility, we compared the average distances between
the effector targets and the DEGs in pathogen-susceptible
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mutants, with average distances between the effector targets and
the DEGs in pathogen-resistant mutants. Expression profiles
of eight Arabidopsis mutants and the corresponding wild-types
were collected after inoculation with Psy (Table 2). Of these
mutated genes, the products of PHYTOALEXIN DEFICIENT 4
(PAD4), PATHOGENESISRELATED GENES 1 (NPR1) and SA
INDUCTION DEFICIENT 2 (SID2) are indispensable members
of SA signaling pathway. Their mutants are more susceptible to
Psy in comparison to wild-type, so is the phytoalexin deficient 2
(pad2) mutant (Vlot et al., 2009; Dubreuil-Maurizi et al., 2011;
Shearer et al., 2012; Tsuda et al., 2013). While for CORONATINE
INSENSITIVE 1 (COI1) and ETHYLENE INSENSITIVE 2 (EIN2)
whose products are important constituents of JA-ET signaling
pathways, enhanced resistance is displayed in their mutants
during Psy infection. Likewise, lysine histidine transporter 1 (lht1)
and wrky18/40 mutants also display enhanced resistance to Psy
(Wang et al., 2002; Eulgem and Somssich, 2007; Liu et al., 2010;
Ralhan et al., 2012; Zheng et al., 2012; Cho and Yoo, 2014).
We also obtained expression profiles of four Arabidopsis mutants
and the corresponding wild-types after inoculation with Hpa
(Table 2). In wrky72 mutant and recognition of peronospora
parasitica 4 (rpp4) mutant, more susceptible phenotypes are
conferred in response to Hpa infection (Bhattarai et al., 2010;
Wang W. et al., 2011). In contrast, microtubule-associated protein
65-3 (map65-3) and phytosulfokin receptor 1 (pskr1) mutants
show enhanced disease tolerance to Hpa (Quentin et al., 2016;
Rodiuc et al., 2016).

We identified up-regulated DEGs upon each inoculated
mutant in comparison with inoculated wild-type, and measured
the average distance from each set of DEGs to the corresponding
Psy or Hpa targets in the comprehensive Arabidopsis PPI network
(Table 2). Intriguingly, the mutant phenotypes can be largely
separated based on the distances. DEGs in Psy or Hpa-susceptible
mutants were closer to Psy or Hpa targets, respectively, relative
to DEGs in Psy or Hpa-resistant mutant (Table 2). These results

indicate that too close allocation of DEGs to the effector targets
is correlated with pathogen susceptibility. Currently, we cannot
distinguish which is the effect and which is the cause from this
observed correlation. Nevertheless, this correlation is at least
not likely to be a simple result of the similarity between DEGs,
because the similarities between DEGs in different mutants
were generally limited: none of the pair-wise Jaccard similarity
coefficients between two sets of mutant DEGs was higher
than 0.4, even restricting the same phenotypes (Figure 4A).
More prominently, the Jaccard similarity coefficients, except
for those between DEGs in rpp4 and wrky72 mutants and
between DEGs in pskr1 and map65-3 mutants, were 0 in the
context of Hpa infection (Figure 4B), thus it is difficult to
infer phenotypes simply by the similarity between DEGs. We
validated the above observation by randomly removing 10,
20, 30, or 40% PPIs from the comprehensive Arabidopsis PPI
network and re-calculated the average distances from each set
of DEGs to the corresponding Psy or Hpa targets after the
removal of PPIs. Generally, DEGs in Psy or Hpa-susceptible
mutants were closer to Psy or Hpa targets compared with
DEGs in Psy or Hpa-resistant mutants, though the rank was
not perfectly in line with the phenotypic discrimination (sid2
was misclassified, Supplementary Table S5). We then tested
our finding in AI-1MAIN, where near 80% of PPIs have been
removed. For Psy, one mutant was misclassified (coi1 was
misclassified, Supplementary Table S6), mimicking the above
result after PPI removal. But for Hpa, only a handful of DEGs
(19 DEGs on average) were covered by AI-1MAIN, and the ranks
of distances failed to accurately discriminate different phenotypic
outcomes (Supplementary Table S6). This result indicates that
sufficient coverage of PPIs (and DEGs) is required to observe
the correlation between the DEG to effector target distance and
phenotypic outcome.

We also employed another sets of DEGs where the expression
profiles of Arabidopsis mutants before and after inoculation

TABLE 2 | The average distances from the DEGs in susceptible or resistant mutants to the effector targets.

Series Platform Mutated genea Phenotype #DEGb Distancec Rankd

Psy infection

GSE6829 GPL198 wrky18/40 Resistant 242 2.292 1

GSE18978 GPL198 ein2 Resistant 225 2.249 2

GSE18978 GPL198 coi1 Resistant 621 2.214 3

GSE19109 GPL198 lht1 Resistant 696 2.206 4

GSE18978 GPL198 pad4 Susceptible 1025 2.205 5

GSE18978 GPL198 npr1 Susceptible 602 2.198 6

GSE18978 GPL198 pad2 Susceptible 234 2.176 7

GSE18978 GPL198 sid2 Susceptible 346 2.175 8

Hpa infection

GSE73351 GPL198 map65-3 Resistant 50 2.122 1

GSE37255 GPL198 pskr1 Resistant 29 2.036 2

GSE18329 GPL198 wrky72 Susceptible 109 2.000 3

GSE22274 GPL198 rpp4 Susceptible 50 2.000 4

aMutants are more resistant or susceptible (column 4) to Psy or Hpa compared with wild-types. bThe number of genes differentially expressed in mutants (column 3)
versus the corresponding wild-types, after inoculation with Psy or Hpa. cThe average distances between the DEGs and Psy or Hpa targets in the comprehensive
Arabidopsis PPI network. dThe distances (column 6) are ranked in descending order.
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FIGURE 4 | The similarities between DEGs in different mutants. The DEGs are obtained by comparing mutants versus wild-type, after Psy or Hpa infection. The
similarity between two DEG sets in different mutants in the context of (A) Psy or (B) Hpa infection is estimated by Jaccard similarity coefficient. The Jaccard similarity
coefficient is calculated by taking the number of DEGs involved in both of the two sets divided by the number of DEGs involved in either of the two sets. The value
marked in the cell is the product of the Jaccard similarity coefficient and 100.

were compared instead. More specifically, the genes up-
regulated in Arabidopsis mutants after Psy or Hpa inoculation
were treated as the DEGs. Consistent with the above results,
the distances from DEGs to the effector targets in the
comprehensive Arabidopsis PPI network had the ability to
distinguish phenotypes (Supplementary Table S7), while the
similarity between DEGs even for mutants of the same phenotype
was consistently low (Supplementary Figure S18). Undoubtedly,
the low reproducibility between the different experiments should
be one reason of the low similarity. However, even for the
mutants tested in the same transcriptome profiling experiment,
such as med16, med 14 and npr1 (GSE45214; Supplementary
Table S7), the overlapped DEGs were still limited (Supplementary
Figure S18). Unlike NPR1, MED14 and MED16 are not only
involved in salicylic acid signaling pathway but also involved in
jasmonic acid/ethylene signaling pathway (Shearer et al., 2012;
Wang et al., 2016). Moreover, it has been reported that MED14
and MED16 differentially regulate defense gene expression in
plant immune responses (Zhang et al., 2013). Therefore, we
speculate that the activated pathways in the three mutants could
be different, which may be another factor that gives rise to the
low similarity of DEGs. In a word, above results indicate that the
distance from DEGs to the effector targets could be a network
parameter of biological significance which is associated with the
phenotypic outcomes.

DISCUSSION

Plant–pathogen interactions are complex and dynamic. In
general, pathogens including bacteria, oomycetes and fungi

secrete effectors to manipulate plant proteins with important
physiology functions (Mukhtar et al., 2011; Weßling et al.,
2014). To defense pathogens, plants have evolved a series of
sophisticated immune mechanisms (van Schie and Takken,
2014). In this study, we obtained the valuable dataset of effector-
target interactions from Mukhtar et al. (2011) and Weßling et al.
(2014), which is an essential knowledge to explore the principles
of pathogenicity and plant immunity. Further, we performed
more extensive and meticulous analyses by integrating other
large-scale datasets. In summary, there are three advantages in
our study. Firstly, by analyzing a comprehensive Arabidopsis
PPI network, we have found that the effectors locally and
densely disrupt proteins important for the information diffusion
throughout the network. This observation partly explains the
efficiency of pathogen infection strategies from the network
topology aspects. Secondly, by further integrating time series
gene expression data, an interesting pattern of the changes in
the distances between the DEGs and the effector targets has
been revealed. Last but not least, by comparing the DEGs
in susceptible and resistant mutants, we have found that the
distances between the DEGs and the effector targets also have a
phenotype implication.

The Complexity of Effector-Target
Interaction Topology
The interactions between the effectors and the targets are
promiscuous. A single Psy or Hpa effector can interact with
multiple Arabidopsis proteins and even disorganize diverse
biological processes, which may explain why about 30 Psy
effectors or about 130 Hpa effectors can fight with Arabidopsis
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containing nearly 30,000 protein coding genes (Coates and
Beynon, 2010; Xin and He, 2013; Lewis et al., 2014). Psy effector
AvrPto is a classic example. It directly binds 11 Arabidopsis
proteins and can manipulate immune receptor kinases to subvert
plant immune system (Win et al., 2012). ATR13 is a Hpa
effector, and it interacts with 24 Arabidopsis proteins that
involve in different biological processes including regulation of
transcription, metabolism, and nucleotide biosynthetic process
based on GO annotations by the DAVID tool (Huang da et al.,
2009). Our results have showed that the effector targets tend to
have higher degree and betweenness centrality. Considering the
wide spectrum of biological functions of the effector targets, it
is possible that some effector targets play an important role in
linking multiple gene modules with different biological functions.

The Relationships among DEGs, Effector
Targets, and Phenotypes
As observed in our analysis, DEGs at the first time point are
closest to the effector targets. And the distances from DEGs
to effector targets seemed to be gradually increased over time.
Such specific change in the relative locations between the effector
targets and DEGs at different time points can be explained
from two perspectives that are not mutually exclusive. On the
one hand, DEGs closest to the targets in the comprehensive
Arabidopsis PPI network are activated at the soonest, followed by
spread the information to other DEGs step by step, triggering the
immune response. On the other hand, the long-term evolutionary
arms race between Arabidopsis and the pathogens urges DEGs
that involve in the plant immunity to step away from the effector
targets for eluding the adverse impact from effectors’ attack.
In line with this assumption, the mutants whose DEGs are
located farther from the effector targets are more likely associated
with resistant phenotype. On the contrary, the mutants whose
DEGs are located closer to the effector targets are more likely
associated with susceptible phenotype. Albeit the above intuitive
explanations and preliminary validations, the generalizability
and mechanism underlying this network topological pattern
between DEGs and the effector targets needs further extensive
experimental validations and investigations.

Limitation and Future Work
To date, experimental plant–pathogen PPIs including
Arabidopsis-Psy and -Hpa PPIs, and time series gene expression
data after inoculation with pathogens are rare, mainly because
the detection technology is challenging and time-consuming
(Nourani et al., 2015). In addition, it was estimated that current
experimental PPIs covers only a small proportion of plant
interactomes (Gu et al., 2011). As a result, low coverage of plant
PPIs, incomplete plant–pathogen interactions or a handful of
time series datasets may lead to biased results.

Nevertheless, our preliminary results have provided
interesting clues for further analysis. By comparing the
effector targets and non-targets in this study, we have found
that the effector targets possess unique characteristics, which can
be considered as features in computational methods to predict
effector-target interactions. Further, based on experimental and

high-quality predicted datasets, our analysis may be extended to
other plant species like rice and maize to test if our findings could
be widely consolidated. Moreover, the feature of the distance
between DEGs and the effector targets may contribute to the
prediction of genes related to plant resistance or susceptibility.

Finally, it is expected that complementary data, when
available, would further deepen our understanding of
plant–pathogen interaction. The integration of pathogens’
transcriptome data, especially time series gene expression data, is
an effective measure (Westermann et al., 2012). On the one hand,
integrating the time series datasets of pathogens could aid the
prediction of the sequential order of effector secretion in planta,
so that the importance of the effector combinations could be
evaluated. On the other hand, by integrating dual transcriptome
data from both the pathogen and the host, one can analyze the
associations between changes in the transcriptomes of pathogens
and plants, and thus better understand pathogenicity and
plant immunity (Westermann et al., 2012). In addition, three-
dimensional protein structures of effectors and targets could
also be helpful. By identifying the key residues for effector-target
interactions in the three-dimensional protein structures, we can
modify the residues of effector targets to prevent detrimental
plant–pathogen interactions, or creates decoys for effectors
to monitor pathogen invasion and trigger plant immunity
(Nishimura et al., 2015).

CONCLUSION

We have conducted an integrative network analysis by combining
Arabidopsis PPIs, known targets of pathogen effectors and
Arabidopsis gene expression profiles in the immune response.
The results show that, despite different mechanisms to colonize
plants and different lifestyles in plant cells, the strategies for
host network attack by Psy and Hpa are surprisingly similar.
For both pathogens, the effector targets are closer to each
other in the comprehensive Arabidopsis PPI network compared
with non-targets, in particular, the targets that interact with
the same effectors are closer to each other compared with
the targets that interact with different effectors. These results
imply that the pathogens employ the local impact mode for
network attack where each effector damages a tightly connected
region in the Arabidopsis PPI network. In comparison to non-
targets, the effector targets have higher betweenness centrality,
indicating the proteins important for the information diffusion
throughout the network are the first choice of the effector targets.
This observation also partly explains why the pathogens’ local
impact mode could have global influences upon the host cellular
network.

In response to the non-random distribution of the effector
targets in the network, the specific allocation pattern of
Arabidopsis DEGs is revealed. As observed when analyzing two
distinct time-series transcriptome data, DEGs as first responders
are closest to the effector targets and the distances between DEGs
and the effector targets increase over time. Detailed analyses
further reveal that DEGs in susceptible mutants are closer to the
effector targets compared with those in resistant mutants.
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Collectively, our analyses suggest a common topological
relationship between DEGs and the effector targets in the
network. While pathogens employ potent local impact mode to
interfere with key positions in host network, plant organizes an
in-depth defense by sequentially activating genes distal to the
effector targets. The feature analyses of the effector targets will
facilitate the discovery of potential targets, while the analyses of
the distances between DEGs and the effector targets may provide
novel clues for the identification of the genes conferring pathogen
susceptibility or resistance.

MATERIALS AND METHODS

Collecting Arabidopsis and
Arabidopsis-Pathogen PPIs
Arabidopsis binary PPIs were downloaded from the BioGRID
(Chatr-Aryamontri et al., 2015), IntAct (Orchard et al., 2014) and
TAIR (Lamesch et al., 2012) databases in July, 2015. To merge
the PPIs from different interaction repositories, the identifier
of each protein was remapped to the TAIR identifier using the
ID mapping tool in the UniProt database (UniProt Consortium,
2015). As a result, a comprehensive Arabidopsis PPI network
including 23,797 non-redundant Arabidopsis PPIs among 8,519
proteins was constructed after discarding unmapped PPIs and
self-interactions. More, collapsed Arabidopsis-Psy and -Hpa PPI
data, in which PPIs containing the effectors from the same
loci were merged, were retrieved from the previous publication
(Mukhtar et al., 2011). Finally, 96 interactions between 27
Psy effectors and 52 Arabidopsis targets (i.e., Psy targets), and
220 interactions between 52 Hpa effectors and 109 Arabidopsis
targets (i.e., Hpa targets) were obtained. By the degree-preserving
rewiring method in the R package igraph (Csardi and Nepusz,
2006), 1,000 random networks were constructed. Just as its
name implies, the degree-preserving rewiring method randomly
rewires the real network’s edges while preserving the degrees of all
nodes. Technically, this procedure could be achieved by choosing
two arbitrary edges A-B and C-D, and substituting them with A-D
and C-B. We also employed AI-1MAIN, a network derived from
one large scale yeast two-hybrid assay (Arabidopsis Interactome
Mapping Consortium, 2011; Mukhtar et al., 2011; Weßling
et al., 2014). AI-1MAIN included 2,661 proteins and 5,664 PPIs
(after excluding self-interactions). To test the generalizability of
topology features observed for Psy and Hpa targets, the Gor
targets derived from Weßling et al. (2014), if applicable, were also
introduced in the analyses.

Calculating the Distances between
Proteins
By definition, the distance between two nodes (proteins) in
the network was equal to the length of the shortest path
between them. Note that the network diameter was assigned
as the distance if two nodes were from two separated (i.e.,
not mutually connected) parts of the network. We employed
the igraph package (Csardi and Nepusz, 2006) in R language1

1https://www.r-project.org/

to calculate the distance between two nodes. The calculation
for the average distance between a differentially expressed gene
(DEG) set and an effector target set was performed in two
steps. Firstly, the minimum distance between a DEG to any
effector target in the effector target set was calculated as the
distance from this DEG to the effector target set. Secondly,
the distances between any DEG in the DEG set to the effector
target set were averaged. The average distance between the DEG
sets of two adjacent time points was calculated in a similar
fashion, where the DEG set of the previous time point and
that of the next time point were analogous to the effector
target set and the DEG set, respectively. When plotting the
distributions of distances, the Gaussian kernel with default
parameters, implemented by the ’density’ function in the ‘stats’
package of R (version 3.1.0), was employed to smooth the
distributions of average distances between different types of
proteins.

Calculating the Topological Parameters
of Proteins
The degree and betweenness centrality of each protein in
networks were measured using the igraph package (Csardi and
Nepusz, 2006) in R language1. The degree of a protein denotes the
number of partners in networks, while the betweenness centrality
of a protein measures the number of shortest paths from all
proteins to all others passing through this protein. The higher
betweenness centrality of a protein means that more shortest
paths should pass through this protein in networks. Usually, the
proteins important for the information propagation throughout
networks have higher betweenness centrality.

Processing Gene Expression Data and
Defining DEGs
Firstly, the time series gene expression datasets during Psy and
Hpa infections (GSE5685 and GSE22274), and the comparative
gene expression profiles of Arabidopsis mutants in response to
Psy or Hpa inoculation were collected from the Gene Expression
Omnibus (GEO) database (Barrett et al., 2013). Next, raw
expression data were normalized utilizing the RMA method
provided by the Bioconductor affy package (Gautier et al.,
2004) in R language. Meanwhile, probe IDs were remapped
to TAIR identifiers. Further, we defined up-regulated DEGs
which satisfied both the fold change (at least 1.5) and p-value
(less than 0.05 after t-test) criteria simultaneously. It has been
shown that the combination of the two criteria contributes to
better microarray interpretations (McCarthy and Smyth, 2009;
Dalman et al., 2012). For the time series datasets, the fold
change was acquired upon pathogen inoculation treatment as
compared to control. For the comparative gene expression
profiles, two types of DEGs were obtained by comparing
the gene expression of (a) pathogen-inoculated mutant vs.
pathogen-inoculated wild-type and (b) pathogen-inoculated
mutant vs. non-inoculated mutant, respectively. Note that
only the up-regulated DEGs appearing in the comprehensive
Arabidopsis PPI network were included in the analyses of this
study.
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Quantifying the Similarity between Two
DEG Sets
Jaccard similarity coefficient was applied to evaluate the similarity
between two DEG sets. It was calculated by taking the number
of DEGs involved in both sets (i.e., the intersection of two sets)
divided by the number of DEGs involved in either of the two
sets (i.e., the union of two sets). The higher Jaccard similarity
coefficient is, the more similar two DEG sets are.
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