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pathways (FreDE_Paths) that are differentially expressed 
in more than 60% of infected samples. These pathways are 
involved in the generation of energy, fatty acid and lipid 
metabolism as well as secondary metabolite biosynthesis. 
Clustering analysis based on the expression levels of these 
26 metabolic pathways clearly distinguishes infected and 
control samples, further suggesting the importance of these 
metabolic pathways in plant defense responses. By com-
paring with FreDE_Paths from abiotic stresses, we find 
that the expression patterns of 26 FreDE_Paths from biotic 
stresses are more consistent across different infected sam-
ples. By investigating the expression correlation between 
transcriptional factors (TFs) and FreDE_Paths, we identify 
several notable relationships. Collectively, the current study 
will deepen our understanding of plant metabolism in plant 
immunity and provide new insights into disease-resistant 
crop improvement.

Keywords Biotic stresses · Gene set enrichment analysis 
(GSEA) · Defense response · Large-scale transcriptional 
data · Metabolic pathways

Introduction

Plants as sessile organisms have to endure a wide variety 
of attacks from microbes (i.e., biotic stresses) and have 
evolved a sophisticated immune system to protect them 
from numerous plant diseases (Jones and Dangl 2006). 
Plant defense responses are complex, involving large-scale 
transcriptional and metabolic reprogramming (Moore et al. 
2011). The model plant Arabidopsis (Arabidopsis thaliana) 
is highly suitable for systems biology analysis, as diverse 
omics datasets such as genomic and transcriptional data 
have been accumulated in the past 15 years. According to 

Abstract 
Key message Through large-scale transcriptional data 
analyses, we highlighted the importance of plant metab-
olism in plant immunity and identified 26 metabolic 
pathways that were frequently influenced by the infec-
tion of 14 different pathogens.
Abstract Reprogramming of plant metabolism is a com-
mon phenomenon in plant defense responses. Currently, a 
large number of transcriptional profiles of infected tissues 
in Arabidopsis (Arabidopsis thaliana) have been deposited 
in public databases, which provides a great opportunity to 
understand the expression patterns of metabolic pathways 
during plant defense responses at the systems level. Here, 
we performed a large-scale transcriptome analysis based 
on 135 previously published expression samples, includ-
ing 14 different pathogens, to explore the expression pat-
tern of Arabidopsis metabolic pathways. Overall, meta-
bolic genes are significantly changed in expression during 
plant defense responses. Upregulated metabolic genes are 
enriched on defense responses, and downregulated genes 
are enriched on photosynthesis, fatty acid and lipid meta-
bolic processes. Gene set enrichment analysis (GSEA) 
identifies 26 frequently differentially expressed metabolic 

Electronic supplementary material The online version of this 
article (doi:10.1007/s11103-017-0617-5) contains supplementary 
material, which is available to authorized users.

 * Ziding Zhang 
 zidingzhang@cau.edu.cn

1 State Key Laboratory of Agrobiotechnology, College 
of Biological Sciences, China Agricultural University, 
Beijing, China

2 Biology Department, Brookhaven National Laboratory, 
Upton, NY 11973, USA

http://orcid.org/0000-0002-8807-0681
http://orcid.org/0000-0002-1165-3248
http://orcid.org/0000-0002-9296-571X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11103-017-0617-5&domain=pdf
http://dx.doi.org/10.1007/s11103-017-0617-5


 Plant Mol Biol

1 3

the current statistics of the plant metabolic network (http://
plantcyc.org), the Arabidopsis genome has been anno-
tated to contain more than 600 known metabolic pathways, 
which cover approximately 3300 metabolic genes. In this 
context, a systems understanding of the metabolic repro-
gramming of Arabidopsis in response to biotic stresses is 
highly required, which will provide guidance to improve 
disease resistance of crop plants.

Many efforts have been made to study how plant metab-
olisms are coordinated to meet biotic stresses imposed 
by different pathogens and significant progress has been 
achieved (Bolton 2009; Lv et al. 2014; Piasecka et al. 2015; 
Rojas et  al. 2014). Plant metabolisms can be divided into 
primary metabolisms and secondary metabolisms. Primary 
metabolisms, which contribute directly to plant growth 
and development, have been suggested to serve as energy 
providers for plant defense responses (Bolton 2009; Rojas 
et al. 2014). Plant defense responses include the reinforce-
ment of cell walls, the generation of reactive oxygen spe-
cies, the production of plant hormones, such as salicylic 
acid (SA), jasmonic acid (JA) and ethylene (ET), and the 
production of pathogenesis-related proteins, as well as the 
development of a hypersensitive response (Jones and Dangl 
2006). Due to their complexity, plant defense responses 
are often energy consuming. To maintain the homeosta-
sis required for a living organism and to respond dynami-
cally to biotic stresses, a trade-off between plant growth 
and defense occurs in plants due to limited resources (Huot 
et al. 2014). Therefore, the upregulation of defense-related 
genes is often compensated by the downregulation of other 
metabolic genes (Huot et al. 2014; Rojas et al. 2014). For 
example, photosynthesis-related genes are suppressed 
during plant defense responses to different biotic stresses 
(Bilgin et al. 2010; Jiang et al. 2016b).

The indispensable contribution of secondary metabolites 
to plant immunity has also been well established (Piasecka 
et  al. 2015), although they are not essential for plants to 
survive. For example, plant hormones, such as SA, JA and 
ET, play key roles in regulating plant defense responses 
(Pieterse et  al. 2012). Moreover, other hormones heavily 
involved in plant development and growth, such as absci-
sic acid, auxin, gibberellic acid, cytokinin and brassinoster-
oids, have also been proven to participate in plant defense 
responses (Pieterse et  al. 2012). Experimental evidence 
suggests that the production of antimicrobial secondary 
metabolites inhibits the progress of infections (Ahuja et al. 
2012). For example, phytoalexin camalexin functions as a 
defense compound against a broad spectrum of pathogens, 
including fungi [e.g., Alternaria brassicicola, Botrytis 
cinerea (Kliebenstein et  al. 2005), Plectosphaerella cuc-
umerina (Sanchez-Vallet et  al. 2010) and Golovinomyces 
orontii (Pandey et al. 2010)], and oomycetes [e.g., Phytoph-
thora brassicae (Schlaeppi et al. 2010)].

Although the role of plant metabolism in plant immunity 
has been studied for many years, previous metabolic analy-
ses have primarily concentrated on the production of only 
one metabolite or a single metabolic gene. Importantly, 
plant defense responses involve massive metabolic genes. 
Accordingly, to gain a broader perspective of the mecha-
nisms that contribute to plant immunity, it is necessary to 
investigate genes at the pathway/genome levels rather than 
evaluating a single gene. Genome-wide transcriptional 
reprogramming of metabolic genes regarding the plant 
immune process were not achieved until omics technolo-
gies became widely available (Kliebenstein 2012). Indeed, 
many efforts in this direction have been made to understand 
how plant metabolisms change as a consequence of path-
ogen infection (Bilgin et  al. 2010; Jiang et  al. 2016a; Lv 
et  al. 2014). By focusing on photosynthesis-related meta-
bolic genes, Bilgin et  al. (2010) compared transcriptional 
data from 22 different biotic stresses on eight plant species 
and showed that photosynthesis-related genes were univer-
sally downregulated. Less et  al. (2011) proposed a bioin-
formatics approach termed gene coordination to elucidate 
the coordinated response of gene networks to external cues 
and used it to analyze the response of the genes encoding 
metabolic enzymes and TFs to multiple biotic and abiotic 
stresses. Their analyses revealed that downregulated genes 
were particularly associated with photosynthesis, tetrapy-
rrole biosynthesis, as well as sugar, lipid, and amino acid 
metabolism, and upregulated genes were enriched on pro-
cesses associated with energy production. Through inte-
grating co-expression gene pairs and regulatory interac-
tions, Lv et  al. (2014) constructed a dynamic regulatory 
network of secondary metabolic pathways in Arabidopsis 
to analyze the regulation of secondary metabolites under 
biotic and abiotic conditions. Studies on plants subjected to 
various biotic stresses indicate that some induced changes 
on metabolic genes are common regardless of the applied 
treatment types (Bilgin et al. 2010).

With the arrival of the ‘big data’ era, there is an increas-
ing and urgent need to understand plant immunity from a 
systems perspective through the integration of the huge 
available omics data deposited in public databases (Bilgin 
et al. 2010; Dong et al. 2015; Li and Zhang 2016; Lv et al. 
2014). Undoubtedly, an integrated pathway-level analysis 
of large-scale transcriptomics data is also highly desired, 
which can allow us to obtain a more complete and clear 
picture of plant defense responses. In this work, we per-
formed a large-scale transcriptome data analysis based on 
previously published microarray data to explore the expres-
sion pattern of Arabidopsis metabolic pathways in response 
to different pathogens. At the gene level, the global tran-
scriptional changes of metabolic genes across 14 different 
biotic stresses provide a comprehensive view of the meta-
bolic processes involved in plant defense responses. At the 
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pathway level, we employed gene set enrichment analysis 
(GSEA; Subramanian et al. 2005) to identify 26 frequently 
differentially expressed metabolic pathways (FreDE_Paths) 
during plant defense responses to 14 different pathogens. 
Based on the 26 identified FreDE_Paths, we performed the 
following two analyses. First, in order to verify whether 
these observations are unique to biotic stresses, we per-
formed a comparative pathway analysis on transcriptome 
datasets that profiled Arabidopsis gene expression respond-
ing to abiotic stresses. Second, we also carried out a cor-
relation analysis to identify potential regulators of the 26 
FreDE_Paths.

Results and discussion

Overview of metabolic gene expression during plant 
defense responses

To understand how metabolic genes expressed during plant 
defense responses, we collected 135 samples (69 infected 
samples and 66 control samples) measuring Arabidopsis 
gene expression following 14 different biotic stress chal-
lenges [i.e., Agrobacterium tumefaciens, A. brassicicola, 

Blumeria graminis, B. cinerea, Cabbage leaf curl virus 
(CaLCuV), Cucumber mosaic virus (CMV), G. orontii, 
Hyaloperonospora arabidopsidis, Phytophthora infestans, 
P. cucumerina, Pseudomonas syringae, Rhizoctonia solani, 
Sclerotinia sclerotiorum and Verticillium longisporum] 
from gene expression omnibus (GEO; Barrett et al. 2013) 
and ArrayExpress (Brazma et al. 2003). The basic informa-
tion of these transcriptional data is summarized in Table 1 
(See Supplementary Table  S1 for more details) and we 
have also made the raw data of the 135 samples available 
at http://systbio.cau.edu.cn/SI/index1.php. Differentially 
expressed genes (DEGs) between the infected samples and 
their corresponding control samples were inferred using 
the RankProd package, which was developed from the rank 
product method (Hong et al. 2006). Rank product is a non-
parametric statistical method that uses the ranks of gene 
expression changes to obtain the combined signatures from 
multiple studies. In total, we obtained 13168 DEGs that 
were differentially expressed under at least one of the 14 
infection conditions (Supplementary Table S2).

Using the inferred DEGs, we first investigated the global 
pattern of metabolic gene expression during plant defense 
responses. For this analysis, we collected 2967 metabolic 
genes from the Aracyc database (Version 13.0; Mueller 

Table 1  Transcriptional data used in this work

h hours, d days
a All the expression profiles were based on the Arabidopsis expression array platform (GPL198), and Arabidopsis ecotype Columbia (Col-0) was 
used for all experiments
b Time for GSE37921 is unclear. Note that the collected transcriptional data are from different time points, which may correspond to different 
infection stages. Thus, comparative analyses based on these transcriptional data may inevitably yield biased results to some extent

Pathogen Pathogen type Accession  numbera Sample number Treatment 
number

Mock number Tissues Time after 
 inoculationb

G. orontii Fungi E-MEXP-2371 6 3 3 Leaf 8 h
B. graminis Fungi GSE12856 6 3 3 Leaf 12 h
R. solani Fungi GSE26206 9 6 3 Seedling 7 d
S. sclerotiorum Fungi E-MEXP-3122 12 6 6 Leaf 24, 48 h
A. brassicicola Fungi GSE50526 10 5 5 Leaf 9, 24 h
B. cinerea Fungi GSE5684 12 6 6 Leaf 18, 48 h
P. cucumerina Fungi E-MEXP-3733

E-MTAB-641
12 6 6 Leaf 24 h

V. longisporum Fungi GSE62537 6 3 3 Root 48 h
P. infestans Oomycetes GSE5616 18 9 9 Leaf 6, 12, 24 h
H. arabidopsidis Oomycetes GSE18329 6 3 3 Aerial part 4 d
P. syringae Bacteria GSE17500

GSE18978
GSE21920

18 9 9 Leaf 6, 24 h

A. tumefaciens Bacteria GSE62749
GSE62750

8 4 4 Leaf
Root

8 h

CMV Viruses GSE37921 6 3 3 Aerial part –
CaLCuV Viruses E-ATMX-34 6 3 3 Leaf 12 d
Sum 135 69 66

http://systbio.cau.edu.cn/SI/index1.php
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et al. 2003). Compared with the overall Arabidopsis genes, 
we found that the proportions of DEGs in metabolic genes 
were significantly higher under all infections by 14 dif-
ferent pathogens (Fig.  1a, Supplementary Table  S3). For 
instance, during the infection of B. cinerea, approximately 
18.1% of Arabidopsis genes were differentially expressed 
compared to normal growth, whereas 30.1% (893 of 2967) 
of metabolic genes were differentially expressed (hypergeo-
metric test, p-value < 2.2 × 10−16). The extensive expression 
changes of metabolic genes during plant defense responses 
to all the 14 pathogens indicate that plant metabolisms play 
critical roles in plant immunity.

Frequently differentially expressed metabolic genes

To explore the metabolic processes that were frequently 
influenced during plant immune responses, we identified 
2087 differentially expressed metabolic genes by select-
ing metabolic genes that were differentially expressed 
under at least one infection condition (Supplementary 
Table  S2). Approximately half of these genes (1044 of 
2087) were classified as upregulated as these genes are 
generally more upregulated in all the conditions, whereas 
the remaining genes (1043) were classified as down-
regulated. Gene ontology (GO; Consortium GO 2004) 
enrichment analysis showed that these upregulated and 
downregulated metabolic genes were enriched on dif-
ferent biological processes (Supplementary Table  S4a, 

b). Photosynthesis, fatty acid and lipid metabolic pro-
cesses were enriched on downregulated metabolic genes 
(hypergeometric test, p-value = 1.71 × 10−25, 2.68 × 10−43 
and 0, respectively). Photosynthesis genes have been 
proven to be globally downregulated during the plant 
immune process in a previous study (Bilgin et  al. 2010). 
Our previous comparative analysis of plant immune 
responses to biotrophic pathogen G. orontii and necro-
trophic pathogen B. cinerea also showed the repression 
of plant photosynthesis during plant responses to both 
pathogens (Jiang et  al. 2016b). Upregulated metabolic 
genes were enriched on plant defense-related GO terms, 
such as response to biotic stimulus (hypergeometric test, 
p-value = 1.62 × 10−15), JA metabolic process (hypergeo-
metric test, p-value = 8.18 × 10−17) and defense response 
(hypergeometric test, p-value = 3.99 × 10−4).

We constructed a Venn diagram to illustrate the over-
lap of differentially expressed metabolic genes induced 
by different pathogen types (Fig.  1b). To do so, we first 
divided the 14 different pathogens into four types (i.e., 
bacteria, fungi, oomycetes and viruses; Table  1). Then, 
for each infection type, if a metabolic gene was differen-
tially expressed under more than 80% of infection condi-
tions of that infection type, it was defined as differentially 
expressed. As shown in Fig.  1b, we observed that some 
metabolic genes were only differentially expressed under 
a single infection type. For example, 59 metabolic genes 
were only differentially expressed during the infection of 

Fig. 1  Differentially expressed metabolic genes during plant defense 
responses to 14 different pathogens. a Metabolic genes were sig-
nificantly changed in expression under all 14 infection conditions. 
DEGs were detected using the function RPadvance in the R pack-
age RankProd. The y-axis shows the proportions of DEGs in overall 
Arabidopsis genes and metabolic genes induced by the corresponding 

pathogen. ***Denotes a significant enrichment of metabolic genes 
on DEGs (p-value < 0.001, hypergeometric test; see Supplementary 
Table  S3 for details). b Four-way Venn diagram of the numbers of 
differentially expressed metabolic genes induced by four different 
types of pathogens
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fungi, whereas 163 metabolic genes were only differentially 
expressed induced by bacteria. Similarly, 98 metabolic 
genes were only differentially expressed induced by both 
oomycetes and viruses. In addition, we also observed large 
overlaps in metabolic gene expression among plant defense 
responses to four different pathogen types. For instance, 
comparing plant defense responses to fungi and oomycetes, 
there were 156 common differentially expressed metabolic 
genes. Twenty-two metabolic genes were differentially 
expressed in response to four different types of pathogens. 

Annotation analysis showed that these 22 metabolic genes 
were significantly enriched on “response to biotic stimulus” 
(hypergeometric test, p-value = 6.74 × 10−3, Supplementary 
Table S4c).

To identify metabolic genes that were differentially 
expressed under most infection conditions, we selected 
metabolic genes that were differentially expressed under 
more than 12 infection conditions and obtained 23 such 
metabolic genes (Fig. S1, Table  2). All genes except 
FAD5 were upregulated in more than 11 conditions. As 

Table 2  23 metabolic genes that are differentially expressed under more than 12 infection conditions

a Genes with known functional roles in plant response to biotic stresses are shown in bold
b The number of conditions in which the corresponding gene was significantly upregulated
c The number of conditions in which the corresponding gene was significantly downregulated

Locusa Gene name Upb Downc GO biological process

AT2G26560 (La Camera et al. 2009) Patatin-like protein 2, PLP2 14 0 Plant-type hypersensitive response, defense 
response to virus

AT1G02930 (Grant et al. 2000) Glutathione S-transferase 1, GST1 14 0 Glutathione metabolic process, defense 
response to bacterium

AT1G69930 (Wagner et al. 2002) Glutathione S-transferase U11, GSTU11 14 0 Glutathione metabolic process, toxin cata-
bolic process

AT2G02390 (Wagner et al. 2002) Glutathione S-transferase 18, GST18 14 0 Glutathione metabolic process, toxin cata-
bolic process

AT2G02930 (Asano et al. 2012) Glutathione S-transferase 16, GST16 13 0 Glutathione metabolic process, defense 
response to fungus

AT1G74590 (Wagner et al. 2002) Glutathione S-transferase U10, GSTU10 13 0 Glutathione metabolic process, toxin cata-
bolic process

AT3G13790 (De Coninck et al. 2005) Cell wall invertase 1, CWI1 13 0 Carbohydrate metabolic process
AT4G34230 (Kim et al. 2004b) Cinnamyl alcohol dehydrogenase 5, CAD5 13 1 Oxidation–reduction process
AT5G39050 (Taguchi et al. 2010) Phenolic glucoside malonyltransferase 1, 

PMAT1
13 0 Response to toxic substance

AT3G22370 (Saisho et al. 1997) Alternative oxidase 1a, AOX1A 13 0 Mitochondria-nucleus signaling pathway, 
oxidation–reduction process

AT3G13610 (Kai et al. 2008) Feruloyl CoA ortho-hydroxylase 1, F6′H1 13 1 HYDROGEN peroxide-mediated pro-
grammed cell death

AT4G25900 – 13 0 Galactose metabolic process
AT4G01700 (Hok et al. 2011) AT4G01700 13 1 Chitin catabolic process, defense response 

to fungus
AT1G72680 (Kim et al. 2004a) Probable cinnamyl alcohol dehydrogenase 

1, CAD1
13 0 Lignin biosynthetic process, oxidation–

reduction process
AT3G26830 (Ferrari et al. 2003; van 

Wees et al. 2003)
Phytoalexin deficient 3, PAD3 13 0 Camalexin biosynthetic process, defense 

response
AT2G43570 Chitinase, CHI 13 0 Systemic acquired resistance
AT1G32350 (Clifton et al. 2006) Alternative oxidase 1d, AOX1D 13 0 Oxidation–reduction process
AT4G34135 (Hok et al. 2011) Udp-glucosyltransferase 73b2, UGT73B2 13 0 Flavonol biosynthetic process, response to 

other organism
AT4G13180 – 13 0 Response to arsenic-containing substance
AT2G43590 – 13 1 Chitinase activity, defense response
AT2G43620 – 12 1 Chitin catabolic process, defense response
AT2G29350 (Lohman et al. 1994) Senescence-associated gene 13, SAG13 12 1 Defense response to insect, oxidation–

reduction process
AT3G15850 (Heilmann et al. 2004) Fatty acid desaturase 5, FAD5 1 12 Oxidation–reduction process, oxylipin 

biosynthetic process, photoinhibition
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expected, eight genes (i.e., CHI, PAD3, PLA2, GST1, 
GST16, UGT73B2, AT2G43620 and AT4G01700) had 
already been proven to be participating in plant responses 
to biotic stresses (Table  2). To successfully invade hosts, 
plant pathogens produce toxins to kill host cells. As a 
response, plants have evolved detoxification mechanisms to 
detoxify pathogen toxins, including glutathione-mediated 
detoxification systems (Ghanta and Chattopadhyay 2011). 
Five glutathione S-transferase (GST) genes were frequently 
differentially expressed (Table 2). Two GST genes (GST1 
and GST16) have already been proven to be participating 
in plant defense response (Asano et  al. 2012; Grant et  al. 
2000), and the other three genes (GSTU11, GST18 and 
GSTU10) need further investigation. Chitin molecules are 
the main structural component in fungal cell walls. Chitin 
degradation induced by chitinases can inhibit fungal growth 
and generate elicitors of defense reactions (El Hadrami 
et  al. 2010). Although viruses do not contain or generate 
chitin, induced expression of chitinases has been reported 
in response to viruses (Margis-Pinheiro et  al. 1993). For 
instance, two putative chitinases (AT4G01700 and CHI) 
were found frequently upregulated during plant defense 
response, although their functional roles in the plant 
immune response against viruses remain elusive. Phyto-
alexin deficient 3 (PAD3), a key cytochrome P450 enzyme 
involved in the biosynthesis of camalexin, was upregu-
lated in 13 infection conditions (Zhou et al. 1999). Arabi-
dopsis pad3 mutants with decreased camalexin levels are 
more susceptible to A. brassicicola (van Wees et al. 2003) 
and B. cinerea (Ferrari et al. 2003) compared to wild-type 
Arabidopsis. The other genes with unclear roles in plant 
immunity were good candidates for further analysis. For 
example, AOX1A and AOX1D, two important isoforms of 
alternative oxidase (AOX) located in the mitochondrial 
inner membrane, were both upregulated in 13 of 14 con-
ditions. Previous work has shown that the expression of 
genes encoding AOX under biotic stresses was frequently 
increased to regulate metabolic and signaling homeostasis 
(Hanqing et  al. 2010; Vanlerberghe 2013). Thus, further 
analyses are needed to investigate how AOX1A and AOX1D 
influence plant defense response.

Expression change of metabolic pathways

We next analyzed the expression changes of Arabidopsis 
metabolic pathways. To do so, we collected 395 metabolic 
pathways with at least five genes from the Aracyc data-
base. To identify the pattern of upregulation or downregu-
lation for each metabolic pathway, we employed GSEA to 
determine the significance of its expression change in each 
infected sample relative to the corresponding control sam-
ple (see the “Materials and Methods” section). Briefly, for 
each infected sample, we first calculated the value of the 

fold-change (FC) for each gene relative to the correspond-
ing control sample and ranked genes based on FCs. Then, 
the pre-ranked GSEA tool (GSEAPreRanked) was used to 
identify differentially expressed metabolic pathways using 
FC-based ranked genes as inputs. As there were 69 infected 
samples in our collected transcriptional datasets (Table 1), 
69 GSEAPreRanked analyses were performed. Based on 
the GSEAPreRanked analyses, we found that 366 of 395 
metabolic pathways were differentially expressed under 
at least one of the 69 infected samples (Supplementary 
Table  S5). For each pathogen, a metabolic pathway was 
defined as differentially expressed during plant immune 
responses if it was differentially expressed under at least 
one of the infected samples infected by the given pathogen. 
Figure  2a displays the number of differentially expressed 
pathways detected from infections by 14 different patho-
gens. Plant immune responses to P. infestans resulted in 
the maximum number of differentially expressed pathways, 
whereas B. graminis caused the minimum number of differ-
entially expressed pathways.

Similar to the analyses performed on metabolic genes, 
we constructed a Venn diagram to illustrate the overlap-
ping of metabolic pathways induced by different pathogen 
types (Fig. S2). For each type (i.e., bacteria, fungi, oomy-
cetes and viruses), if a metabolic pathway was differen-
tially expressed under more than 60% infection conditions 
belonging to the given type, it was defined as differentially 
expressed. In total, we obtained 98 metabolic pathways that 
were differentially expressed under infections by at least 
one pathogen type. We observed that some pathways over-
lapped between different types of pathogens and some were 
unique to an individual pathogen type. Fungi and oomy-
cetes not only contain many similar morphological and 
physiological features but also share common infection pro-
cesses in pathogenesis (Meng et al. 2009). Approximately 
76% (26 of 34) of the differentially expressed metabolic 
pathways induced by fungi overlapped with those pathways 
induced by oomycetes, which was larger than the overlap 
between fungi and bacteria or viruses. This indicated that 
the plant metabolism responses to fungi and oomycetes 
were more similar to some extent. Unlike cellular patho-
gens (bacteria, fungi and oomycetes), plant viruses are 
obligate intracellular parasites that can only replicate in the 
cytoplasm of a host cell (Hull 2002). The overlap between 
metabolic pathways induced by viruses and the other three 
types of pathogens were generally small. Approximately 
36% (15 of 41) metabolic pathways induced by viruses 
were specific to viruses. This showed that plant defense 
response to viruses was different from other pathogens 
from the perspective of plant metabolisms.

We were interested in metabolic pathways that were 
frequently differentially expressed by different pathogens. 
To help determine this, we defined a metabolic pathway 
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differentially expressed in at least 60% of the 69 infected 
samples as a FreDE_Path. Based on this criterion, we 
obtained 26 FreDE_Paths (Fig.  2b; Table  3). Note that 
COMPLETE-ARO-ARA-PWY is the super pathway of 
TRPSYN-PWY, and PHOTOALL-PWY is the super 
pathway of PWY-101 and CALVIN-PWY. Among the 26 
FreDE_Paths, 16 pathways were upregulated in a majority 
of infection conditions, and the remaining ten metabolic 
pathways were downregulated. According to their super 
pathways in the Aracyc database, these pathways were clas-
sified into nine different categories (Fig. 2c). According to 
the number of pathways in each category, the top three cat-
egories were ‘secondary metabolites biosynthesis,’ ‘amino 
acid metabolism’ and ‘generation of precursor metabolites 

and energy.’ Secondary metabolisms have long been 
thought to contribute to plant–pathogen interactions (Ben-
nett and Wallsgrove 1994). Previous studies have revealed 
that many secondary metabolites play important roles in 
plant defense responses, such as glucosinolates (Clay et al. 
2009) and camalexin (Ahuja et al. 2012). Both camalexin 
biosynthesis and glucosinolate biosynthesis metabolic path-
ways were upregulated in the majority of infected samples 
(Table 3). Amino acids are precursors for the biosynthesis 
of protective plant natural products (such as glucosinolates 
and phytoalexin) that directly exert defenses to pathogens 
(Zeier 2013). In addition to their roles as precursors for 
defense components, amino acid metabolisms have also 
been proven to directly impact plant-pathogen interactions. 

Fig. 2  Differentially expressed pathways detected using GSEA. A 
pathway is defined as differentially expressed if its normal p-value 
is lower than 0.05. a The number of differentially expressed path-
ways during plant immune response to 14 differential pathogens. b 
Expression patterns of individual metabolic pathways during plant 
immune response. The metabolic pathways defined in the Aracyc 
database are shown in the coordination of  Nup+Ndown and  Nup−Ndown. 
 Nup and  Ndown represent the fraction of infected samples, in which a 
pathway is significantly upregulated and downregulated, respectively. 

The dashed lines demarcate the region where the absolute value of 
 Nup−Ndown is <50% of  Nup+Ndown and are generated for visualization 
purposes only. FreDE_Paths are marked with the corresponding path-
way names and the overlapping nodes are displayed in node transpar-
ency. Frequently upregulated pathways occupy positions in the upper 
right corner, whereas frequently downregulated pathways appear 
in the lower right corner. c The distribution of the categories for 26 
FreDE_Paths. The category for each pathway is obtained according to 
its belonging to a super pathway in the Aracyc database



 Plant Mol Biol

1 3

Four amino acid metabolism pathways were upregulated in 
many infected samples (Table 3). Plant defense responses 
require a significant amount of energy, as they involve 
massive transcriptional reprogramming (Eulgem 2005). 
As expected, pathways for the generation of precursor 
metabolites and energy, such as ‘TCA cycle variation V,’ 
were significantly upregulated in many infected samples. 
Moreover, ET, JA and auxin biosynthesis pathways were all 
upregulated in more than 65% infected samples, which was 
consistent with the importance of plant hormones in plant 
immune responses.

In contrast to the upregulation of a pathway related to 
generation of precursor metabolites and energy, three 
other pathways (i.e., photosynthesis light reactions, oxy-
genic photosynthesis and Calvin–Benson–Bassham cycle; 
Table  3) from the same category were downregulated in 
the majority of infected samples. Oxygenic photosyn-
thesis, photosynthesis light reactions and Calvin–Ben-
son–Bassham cycle are all subpathways of photosynthesis. 
Previous analyses have already shown that photosynthesis 

genes are globally downregulated during biotic stresses 
(Bilgin et  al. 2010). Two mechanisms of the downregula-
tion of photosynthesis have been proposed: (1) suppression 
triggered by pathogen effectors and (2) feedback regulation 
mediated by sugar signals (Rojas et al. 2014). Other down-
regulated pathways include fatty acids biosynthesis, two 
secondary metabolite biosynthesis pathways and a starch 
degradation II metabolic pathway.

Signatures of plant defense responses

To test the ability of the 26 FreDE_Paths in classifying 
infected and control samples, we performed a clustering 
analysis for the 135 samples used in this work based on the 
pathway scores. To do so, we defined the pathway score 
of a given metabolic pathway as the average expression 
value of metabolic genes included in the given metabolic 
pathway. As shown in Fig. 3, infected samples and control 
samples are clustered into four different clusters. Cluster 2 
and Cluster 4 are largely comprised of control samples. We 

Table 3  26 FreDE_Paths 
during plant immune responses 
to 14 different pathogens

a The number of infected samples with significantly upregulated expression
b The number of infected samples with significantly downregulated expression

Unique-ID Name Upa Downb

PWY-6842 Glutathione-mediated detoxification II 66 2
PWY-101 Photosynthesis light reactions 5 61
PHOTOALL-PWY Oxygenic photosynthesis 5 61
PWY-6902 Chitin degradation II 63 2
CAMALEXIN-SYN Camalexin biosynthesis 60 2
PWY-601 Glucosinolate biosynthesis from tryptophan 59 2
CAROTENOID-PWY Superpathway of carotenoid biosynthesis 4 54
PWYQT-4477 Indole glucosinolate breakdown 56 2
COMPLETE-ARO-ARA-PWY Superpathway of phenylalanine, tyrosine and 

tryptophan biosynthesis
56 0

CHLOROPHYLL-SYN Chlorophyllide a biosynthesis I 0 54
PWY-6051 2,4,6-Trinitrotoluene degradation 54 0
TRPSYN-PWY Tryptophan biosynthesis 52 0
PWY-6724 Starch degradation II 10 41
PWY-735 JA biosynthesis 51 0
PWY-7388 Octanoyl–ACP biosynthesis 2 47
PWY-581 Auxin biosynthesis 46 1
PWYQT-4481 TCA cycle variation V (plant) 44 1
PWY-6922 L-Nδ-acetylornithine biosynthesis 45 0
ETHYL-PWY Ethylene biosynthesis I (plants) 45 0
PWY-5321 Quercetin glycoside biosynthesis 44 0
PWY-4381 Fatty acid biosynthesis initiation I 2 41
GLUDEG-I-PWY GABA shunt 43 0
PWY-2301 myo-inositol biosynthesis 0 43
ARO-PWY Chorismate biosynthesis I 42 0
CALVIN-PWY Calvin–Benson–Bassham cycle 4 38
PWY-5080 Very long chain fatty acid biosynthesis I 0 41
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noticed that all ten samples of Cluster 4 were from roots 
and Cluster 2 did not contain samples from root. It is pos-
sible that root-specific expression patterns lead to the sepa-
ration of Cluster 2 and Cluster 4, since it has been reported 
that roots have distinct gene expression patterns from aerial 
tissues (He et al. 2016). Cluster 1 and Cluster 3 mainly con-
sist of infected samples, but why these infected samples 
are separated into two clusters needs further investigation. 
Taken together, clustering analysis showed that these 26 
FreDE_Paths can successfully classify 135 samples into 
infection and control groups, meaning that the 26 FreDE_
Paths had different expression patterns in infected and con-
trol samples. These results further showed the importance 
of these pathways in plant defense responses, and we con-
cluded that these 26 FreDE_Paths can act as signatures of 
plant defense responses.

Different expression patterns resulting from biotic 
stresses and abiotic stresses

The above analysis identified 26 metabolic pathways that 
were frequently influenced (including upregulation and 
downregulation) during the infection of various pathogens. 
In addition, we also showed that microarray samples of dif-
ferent conditions can be separated using information within 
the expression profiles of those 26 pathways. We ques-
tioned whether the expression patterns of those 26 path-
ways are unique to biotic stresses. Hence, we investigated 
the data from abiotic stresses using the same approach. We 
applied GSEA to Arabidopsis expression data under eight 
different abiotic stresses (i.e., cold, drought, genotoxic, 
heat, osmotic, salt, UV and wound), which are composed 
of 106 abiotic stress-processing samples and 16 control 
samples in shoot tissues (Kilian et al. 2007; Supplementary 

Table S6). A total of 392 pathways were identified as differ-
entially expressed under at least one of 106 abiotic stress-
processing samples (Supplementary Table  S7). Similar to 
the definition of FreDE_Paths under biotic stresses (i.e., 
differentially expressed under at least 60% of abiotic stress-
processing samples), only three pathways were detected 
from abiotic stresses (Fig. S3). Interestingly, all three path-
ways also belong to the list of 26 FreDE_Paths from biotic 
stresses (Table 3). As shown in Fig. S3, these three FreDE_
Paths are distributed inside the region demarcated by two 
dashed lines, which are different from the expression pat-
terns of the corresponding pathways in biotic stresses. For 
instance, the pathway PWY-6842 (Glutathione-mediated 
detoxification II) was upregulated in 50 out of 106 abiotic 
stress-processing samples, while it was downregulated in 
26 samples. Comparatively, PWY-6842 was upregulated in 
66 out of 69 infected samples during biotic stress.

We employed a heat map to systematically compare the 
expression patterns of these 26 FreDE_Paths detected from 
different biotic stresses with the corresponding expression 
changes in abiotic stresses (Fig.  4). In this heat map, we 
used the normalized enrichment scores (NESs) resulting 
from GSEA to quantify the differences of expression pat-
terns. The larger the absolute value of the NES, the more 
likely a pathway tended to be differentially expressed. A 
pathway with a positive/negative NES indicates that the 
pathway is upregulated/downregulated. As shown in Fig. 4, 
the expression patterns of the 26 FreDE_Paths were gener-
ally more consistent in response to biotic stresses in com-
parison to abiotic stresses, although some abiotic stress-
processing samples also shared similar expression patterns 
with the biotic stresses. These results indicate that plant 
defense responses to different pathogens result in the con-
sistent upregulation or downregulation of several metabolic 

Fig. 3  Hierarchal clustering of 135 samples based on the 26 FreDE_Paths. Infected and control samples were shown in different colors
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pathways, which is different from plant response to abiotic 
stresses.

Detection of significant correlation between metabolic 
pathways and TFs

To gain an in-depth understanding of how plants regulate 
these 26 FreDE_Paths during plant defense responses, we 
used a list of 1707 TFs collected from PlantTFDB (Jin 
et  al. 2014) and AtTFDB (Yilmaz et  al. 2011). Based on 
the assumption that significant correlation implies a poten-
tial regulatory relationship, the context likelihood of relat-
edness (CLR) algorithm (Faith et  al. 2007) was used to 
identify significant correlations between TFs and metabolic 
pathways (see the “Materials and Methods” section for 
details). The CLR algorithm has been used to infer regula-
tory links based on expression profiles and proven superior 
to other methods (Faith et al. 2007). Hu et al. (2013) used 
the CLR algorithm to infer significant expression correla-
tions between metabolic pathways and signaling genes and 
identified several notable relationships. In this work, given 
a Z-score cutoff of 2.0 and a Pearson correlation coefficient 
(PCC) cutoff of 0.6/−0.6, the resulting network contained 
353 relationships between 171 TFs and 26 FreDE_Paths 
(Supplementary Table  S8). Figure  5 shows the network 
representation of the predicted TF-metabolic pathway rela-
tionships of Arabidopsis. On average, each pathway was 
predicted to be regulated by approximately 13 TFs, and 
each TF regulated two pathways. The metabolic pathway 
‘very long chain fatty acid biosynthesis I’ (Pathway ID: 
PWY-5080) was the pathway regulated by the largest num-
ber of TFs and was predicted to be regulated by 32 TFs. 
As a predicted regulator shared by the largest number of 
metabolic pathways, the TF WRKY45 potentially regulated 

ten different metabolic pathways, including ARO-PWY, 
CAMALEXIN-SYN, COMPLETE-ARO-ARA-PWY, 
ETHYL-PWY, PWY-5080, PWY-581, PWY-601, PWY-
6051, PWY-6842 and TRPSYN-PWY. Even though the 
role of WRKY45 in plant immunity has not been reported, 
extensive studies have firmly established the importance 
of numerous distinct WRKY members in plant immunity 
(Tsuda and Somssich 2015). Moreover, WRKY45 has sig-
nificantly enhanced expression in plant defense response to 
an avirulent strain of P. syringae (Dong et  al. 2003), chi-
tosan (Povero et  al. 2011) or CaLCuV (Ascencio-Ibanez 
et  al. 2008). In this work, WRKY45 was also identified 
as upregulated in 13 of 14 infection conditions. These 
evidences show the potential role of WRKY45 in plant 
immunity.

The CLR algorithm identified several regulatory rela-
tionships that have been reported in previous studies. For 
example, the camalexin biosynthesis pathway had high 
mutual information with TFs MYB51 and NAC042. Nota-
bly, the expression of the two TFs was positively correlated 
with the expression of the camalexin biosynthesis path-
way (Fig.  5). Previous work has shown that MYB51 is a 
key regulator of camalexin biosynthesis (Frerigmann et al. 
2015), and NAC042 has also been proven to be involved 
in the regulation of camalexin biosynthesis (Saga et  al. 
2012). Moreover, regulatory relationships between MYB51 
and two metabolic genes (i.e., CYP79B2 and CYP79B3) in 
camalexin biosynthesis metabolic pathways have already 
been identified (Gigolashvili et al. 2007). We also collected 
149 TFs assigned as defense-related genes from the review 
article of Tsuda and Somssich (Tsuda and Somssich 2015). 
Among 171 TFs, 25 were overlapped with these 149 plant 
defense-related TFs, and this overlap was statistically sig-
nificant compared with the random control (hypergeometric 

Fig. 4  Heat map of 26 common pathways under biotic and abi-
otic stresses. NES values for the 26 FreDE_Paths in 69 biotic stress 
processing samples and 106 abiotic stress processing samples were 
used to draw the heat map. Three pathways that were identified as 

frequently differentially expressed in both biotic and abiotic stresses 
were marked with an asterisk. Both rows and columns were clustered 
using hierarchical clustering
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test, p-value = 9.24 × 10−7). The significant overlap further 
showed the importance of 171 TFs in plant immunity.

The high mutual information between these TFs and 
metabolic pathways may provide new hints on how these 
TFs regulate plant immunity. For example, overexpression 
of WRKY75 in Arabidopsis enhances resistance to S. scle-
rotiorum (Choi et al. 2014) and reduces bacterial growth of 
Pectobacterium carotovorum by positively regulating JA-
mediated defense signaling (Choi et al. 2014). In our CLR 
analysis, we observed high mutual information between 
WRKY75 and all three frequently upregulated hormone 
biosynthesis pathways (i.e., JA biosynthesis, auxin biosyn-
thesis and ET biosynthesis; Supplementary Table S8). It is 
possible that WRKY75 regulates plant defense by regulat-
ing the biosynthesis of plant hormones. Another example 
of the predicted significant regulatory relationships was 
BEE2 (brassinosteroid enhanced expression2) and three 
frequently downregulated photosynthesis-related path-
ways, namely, oxygenic photosynthesis, photosynthesis 
light reactions and the Calvin–Benson–Bassham cycle. 

Overexpression of BEE2 partially inhibits immunity, and 
it is speculated that BEE2 acts redundantly with HBI1 
(Homolog of BEE2 interacting with IBH1; Malinovsky 
et  al. 2014). It was established that HBI1 might inhibit 
immunity through regulating photosynthesis (Fan et  al. 
2014). Here, we also observed high mutual information 
between HBI1 and the Calvin–Benson–Bassham cycle. 
These results further enhanced the speculation that both 
BEE2 and HBI1 inhibit plant immunity by regulating 
photosynthesis.

Conclusions

We performed a large-scale transcriptome analysis based 
on previously published microarray data to explore the 
reprogramming of metabolic pathways during plant defense 
responses to 14 different pathogens. This analysis repre-
sents the largest transcriptome analysis of plant metabo-
lism reprogramming during plant defense responses, and 

Fig. 5  Network representation of the predicted regulatory relation-
ship between 171 TFs and 26 FreDE_Paths. Triangle nodes denote 
TFs, while circular nodes stand for pathways. Arrows show potential 
regulatory relationship between TFs and FreDE_Paths. The color 

scheme of edges represents PCCs ranging from −1 (blue) to 1 (red). 
This figure was prepared using Cytoscape. The top 10 TFs that regu-
lated the largest number of pathway were colored in red
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we would like to emphasize the following major find-
ings. First, we highlighted the extensive changes of meta-
bolic genes during plant defense responses by differential 
expression analysis and identified 23 frequently differen-
tially expressed metabolic genes. Second, we identified 
26 metabolic pathways that were frequently differentially 
expressed in more than 60% of infected samples, such as 
camalexin biosynthesis, JA biosynthesis, chitin degradation 
and photosynthesis, demonstrating the existence of com-
mon pathways responding to different pathogens. Cluster-
ing analysis showed that infected and control samples were 
divided into distinct groups based on the expression lev-
els of 26 FreDE_Paths. This finding further supports that 
these pathways represent common responsive pathways in 
plant immunity to different pathogens. Third, by comparing 
with abiotic stresses, we showed that expression pattern of 
FreDE_Paths identified from biotic stresses were more con-
sistent than these from abiotic stresses. Finally, we identi-
fied a number of associations between 171 TFs and the 26 
FreDE_Paths, such as the regulation between MYB51 and 
camalexin biosynthesis. These predicted associations pro-
vide information about how plants regulate these pathways 
when responding to pathogens. Taken together, it is hoped 
that our current analyses can provide new direction for the 
development of broad-spectrum disease-resistant crops. 
For instance, it is possible that fine-tuning of these FreDE_
Paths might result in the enhancement of plant resistance 
without compromising crop yield.

Materials and methods

Data collection and preprocessing

Raw transcriptional data of Arabidopsis in response to 
the infections of 14 different pathogens were downloaded 
from GEO and ArrayExpress. Raw transcriptional data 
in response to eight different abiotic stresses were down-
loaded from AtGenExpress (http://jsp.weigelworld.org/
AtGenExpress/resources/). We only used transcriptional 
datasets obtained from the most comprehensive Arabidop-
sis expression array platform GPL198. The above raw data 
were normalized by RMA using the Bioconductor R pack-
age affy (Gautier et  al. 2004). Probe sets were mapped to 
their corresponding AGI (Arabidopsis Genome Initiative) 
gene identifiers according to the annotation file from GEO 
and replicated probes of the same gene were averaged.

Arabidopsis metabolic pathway information was 
retrieved from the Aracyc database (Version 13.0) at the 
plant metabolic network (http://www.plantcyc.org/). Genes 
in each pathway were filtered using expression data, and 
only pathways with genes detected on the microarray were 

kept for further analysis. Genes from metabolic pathways 
were defined as metabolic genes.

Differential expression analysis

For the infection of each pathogen, the function RPad-
vance in the BioConductor package RankProd (Hong et al. 
2006), which is specifically designed for meta-analysis by 
taking into consideration the different origins of samples, 
was used to identify DEGs between infected samples and 
the corresponding control samples. Briefly, the FCs of 
genes between infected and control samples from individ-
ual studies were first translated to the ranks of genes. Then, 
the combined rank of each gene from multiple studies 
was defined as the rank product. Independent permutated 
expression data were used to calculate the null density of 
the rank product and to determine the p-value associated 
with each gene. Finally, in this work, a gene was defined as 
differentially expressed with a p-value less than 0.05 and an 
average FC larger than 1.5.

Gene set enrichment analysis

GSEA was used to assess metabolic pathways significantly 
differentially expressed during plant defense response. 
GSEA is a statistical method that determines if an a priori 
defined set of genes shows statistically significant concord-
ant upregulated or downregulated expression between two 
conditions (i.e., infection and control in this work; Sub-
ramanian et  al. 2005). By excluding gene sets with fewer 
than five or more than 1000 genes, 395 metabolic path-
ways were used for GSEA. To identify metabolic pathways 
with significant expression changes for each infected sam-
ple, we use the pre-ranked GSEA tool (GSEAPreRanked; 
http://www.broadinstitute.org/gsea/, version 2.2.1) directly. 
GSEAPreranked runs GSEA against a user-supplied ranked 
list of genes. For each gene, we first calculated its expres-
sion change  (log2 FC) in each infected sample relative to 
the corresponding normal samples. Then, for each infected 
sample, genes were ranked from the highest to the low-
est by  log2 FC. Ranked genes were then used as inputs to 
GSEAPreRanked with the default options except that the 
permutation type was set to Gene_set with 1000 permu-
tations. Metabolic pathways with p-values less than 0.05 
were defined as significantly differentially expressed meta-
bolic pathways.

GO enrichment analysis

GO enrichment analysis was performed using the plugin 
BiNGO 3.02 (Maere et  al. 2005) in Cytoscape (Shannon 
et  al. 2003) with the “GO biological process” category. 
Using the whole annotations of Arabidopsis genes as the 

http://jsp.weigelworld.org/AtGenExpress/resources/
http://jsp.weigelworld.org/AtGenExpress/resources/
http://www.plantcyc.org/
http://www.broadinstitute.org/gsea/
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reference set and the hypergeometric test as the statisti-
cal test, over-represented terms were selected with a sig-
nificance level of 0.05 after the Benjamini–Hochberg 
correction.

Clustering analysis

Expression samples were clustered using a hierarchical 
clustering method (Eisen et al. 1998) with an average link-
age algorithm (Sokal 1958). Briefly, the pathway score 
for a given metabolic pathway was first calculated as the 
average expression value of genes included in the pathway. 
Then, the Euclidean distance function was used to meas-
ure the distance between two samples based on the pathway 
scores of 26 FreDE_Paths. Finally, the hierarchical cluster-
ing algorithm was employed to cluster different samples 
based on the Euclidean distances.

TF-metabolic pathway regulation analysis

The CLR method (Faith et  al. 2007) was used to identify 
significant relationships between 1707 Arabidopsis TFs 
and 26 FreDE_Paths. The set of 1707 TFs were collected 
from PlantTFDB (Jin et al. 2014) and AtTFDB, a sub data-
base of the Arabidopsis gene regulatory information server 
(AGRIS) (Yilmaz et al. 2011) and filtered using expression 
data. For gene i in the infected sample m, we first calcu-
lated its expression change ΔEm

i
 as the FC between the 

infected sample m and the average of the corresponding 
control samples. For pathway j in the infected sample m, 
the expression change was calculated as 
ΔE_pathm

j
=
∑nj

n=1
ΔEm

n

�

nj
, where nj is the number of genes 

within the metabolic pathway j. Then, the mutual informa-
tion (MI) between TF i and metabolic pathway j was calcu-
lated across all 69 infected samples:

Similar to Hu et  al. (2013), all MI values were com-
puted using ten bins of ΔE and ΔE_path. Next, the back-
ground distribution was constructed from two sets of 
MI values: the set of MI values between TF i and 26 
FreDE_Paths (MIi,1,MIi,2,MIi,3, ...,MIi,26), and the set 
of MI values between metabolic pathway j and 1707 TFs 
(MI1,j,MI2,j,MI3,j, ...,MI1707,j). After that, the z-scores zi 
and zj of Mij relative to the background distribution were 
calculated. Finally, the CLR interaction Z-score for the pair 
between gene i and pathway j was calculated as

In the meantime, we calculated the PCC for the gene i 
and the pathway j based on their expression changes across 

(1)MIij = MI(ΔEi,ΔE_pathj)

(2)Zij =

√

(

z2
i
+ z2

j

)

∕2

69 infected samples. In our work, a TF-pathway relation-
ship with a Z-score no less than 2.0 and an absolute value 
of PCC no less than 0.6 was regarded as significant.
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